Intel stopped development of its RealSense depth perception cameras in 2018, but they're still selling them? Or did they restart development?
Intel stopped development of its RealSense depth perception cameras in 2018, but they're still selling them? Or did they restart development?
OAK-D Depth Sensing AI Camera Gets Smaller and Lighter
The OAK-D is an open-source, full-color depth sensing camera with embedded AI capabilities, and there is now a crowdfunding campaign for a newer, lighter version called the OAK-D Lite. The new model does everything the previous one could do, combining machine vision with stereo depth sensing and an ability to run highly complex image processing tasks all on-board, freeing the host from any of the overhead involved.
An example of real-time feature tracking, now in 3D thanks to integrated depth sensing.
The OAK-D Lite camera is actually several elements together in one package: a full-color 4K camera, two greyscale cameras for stereo depth sensing, and onboard AI machine vision processing with Intel's Movidius Myriad X processor. Tying it all together is an open-source software platform called DepthAI that wraps the camera's functions and capabilities together into a unified whole.
The goal is to give embedded systems access to human-like visual perception in real-time, which at its core means detecting things, and identifying where they are in physical space. It does this with a combination of traditional machine vision functions (like edge detection and perspective correction), depth sensing, and the ability to plug in pre-trained convolutional neural network (CNN) models for complex tasks like object classification, pose estimation, or hand tracking in real-time.
So how is it used? Practically speaking, the OAK-D Lite is a USB device intended to be plugged into a host (running any OS), and the team has put a lot of work into making it as easy as possible. With the help of a downloadable application, the hardware can be up and running with examples in about half a minute. Integrating the device into other projects or products can be done [in Python with the help of the DepthAI SDK](https://docs.luxonis.com/projects/sdk/en/latest/getting_started/#cookbook), which provides functionality with minimal coding and configuration (and for more advanced users, there is also a [full API](https://docs.luxonis.com/projects/api/en/latest/#welcome-to-depthai-gen2-api-documentation) for low-level access). Since the vision processing is all done on-board, even a Raspberry Pi Zero can be used effectively as a host.
There's one more thing that improves the ease-of-use situation, and that's the fact that support for the OAK-D Lite (as well as the previous OAK-D) has been added to a software suite called the Cortic Edge Platform (CEP). CEP is a block-based visual coding system that runs on a Raspberry Pi, and is aimed at anyone who wants to rapidly prototype with AI tools in a primarily visual interface, providing yet another way to glue a project together.
Earlier this year we saw the OAK-D used in a system to visually identify weeds and estimate biomass in agriculture, and it's exciting to see a new model being released. If you're interested, the OAK-D Lite is available at a considerable discount during the Kickstarter campaign.
#crowdfunding #digitalcamerashacks #aicamera #depthcamera #movidius #myriadx #oakd #opencv #raspberrypi #smartcamera #stereovision
RealSense No Longer Makes Sense For Intel
We love depth-sensing cameras and every neat hack they enabled, but this technological novelty has yet to break through to high volume commercial success. So it was sad but not surprising when CRN reported that Intel has decided to wind down their RealSense product line.
As of this writing, one of the better confirmations for this report can be found on the RealSense SDK GitHub repository README. The good news is that core depth-sensing RealSense products will continue business as usual for the foreseeable future, balanced by the bad news is that some interesting offshoots (facial authentication, motion tracking) will be declared "End of Life" immediately and phased out over the next six months.
This information tells us while those living out on the bleeding edge will have to scramble, there is no immediate crisis for everyone else, whether they be researchers, hobbyists, or product planners. But this also means there will be no future RealSense cameras, kicking off many "What's Next?" discussions in various communities. Like this thread on ROS (Robot Operating System) Discourse.
Three popular alternatives offer distinctly different tradeoffs. The "Been Around The Block" name is Occipital, with their more expensive Structure Pro sensor. The "Old Name, New Face" option is Microsoft Azure Kinect, the latest non-gaming-focused successor to the gaming peripheral that started it all. And let's not forget OAK-D as the "New Kid On The Block" that started with a crowdfunding campaign and building an user community by doing things like holding contests. Each of these will appeal to a different niche, and we'll keep our eye open in the future. Let's see if any of them find the success that eluded the original Kinect, Google's Tango, and now Intel's RealSense.
[via Engadget]
#hardware #news #robotshacks #computervision #depthcamera #depthsensor #intel #intelrealsense #machinevision #realsense #smartcamera
Machine-Vision Archer Makes You the Target, If You Dare
We'll state right up front that it's a really, really bad idea to let a robotic archer shoot an apple off of your head. You absolutely should not repeat what you'll see in the video below, and if you do, the results are all on you.
That said, [Kamal Carter]'s build is pretty darn cool. He wisely chose to use just about the weakest bows you can get, the kind with strings that are basically big, floppy elastic bands that shoot arrows with suction-cup tips and are so harmless that they're intended for children to play with and you just know they're going to shoot each other the minute you turn your back no matter what you told them. Target acquisition is the job of an Intel RealSense depth camera, which was used to find targets and calculate the distance to them. An aluminum extrusion frame holds the bow and adjusts its elevation, while a long leadscrew and a servo draw and release the string.
With the running gear sorted, [Kamal] turned to high school physics for calculations such as the spring constant of the bow to determine the arrow's initial velocity, and the ballistics formula to determine the angle needed to hit the target. And hit it he does -- mostly. We're actually surprised how many on-target shots he got. And yes, he did eventually get it to pull a [William Tell] apple trick -- although we couldn't help but notice from his, ahem, hand posture that he wasn't exactly filled with self-confidence about where the arrow would end up.
[Kamal] says he drew inspiration both from [Mark Rober]'s dart-catching dartboard and [Shane Wighton]'s self-dunking basketball hoop for this build. We'd say his results put in him good standing with the skill-optional sports community.
#mischacks #archery #arrow #ballistics #bow #computervision #depthcamera #machinevision #realsense #target
@openframeworks tutorial 033 - We look at using a Kinect depth camera with the ofxKinect add-on. brilliant
https://youtu.be/7OQ0pIowNxc?a
#openFrameworks #code #learn #patreon #support #ofxKinect #kinect #camera #depthcamera