Our #preprint where we derive an #activeGel #model with entropic elasticity of the #microstructure from the thermodynamic constraints on the dynamics of #myosin molecular motors is now updated!

Hopefully more readable, and with the example of a #cyst like contractile sphere.

#cytoskeleton #rheology #activeMatter #softMatter #actomyosin

@mechanobio

A new #preprint where we derive an #activeGel #model with entropic elasticity of the #microstructure and give interpretations of the thermodynamic constraints on the dynamics of #myosin molecular motors.

#cytoskeleton #rheology #activeMatter #softMatter

#SoftMatter have just published the results of a project that Renato Assante, Davide Marenduzzo, Alexander Morozov, and I recently worked on together! What did we do and what’s new? Briefly…

#Microswimmer suspensions behave in a similar way to fluids containing kinesin and microtubules. Both systems can be described by the same system of three coupled nonlinear #PDEs.

A #LinearStabilityAnalysis of these equations suggests that variations in concentration across the system don’t significantly affect emergent #phaseBehaviour. How then can we explain #experiments that show visible inhomogeneities in #microtubule#kinesin mixtures, for instance?

With increasing activity, we move away from the quiescent regime, past the onset of #SpontaneousFlow, and deeper into the active phase, where #nonlinearities become more important. What role do concentration inhomogeneities play here?

We investigated these questions, taking advantage of the #openSource #Dedalus #spectral framework to simulate the full nonlinear time evolution. This led us to predict a #novel regime of #spontaneous #microphaseSeparation into active (nematically ordered) and passive domains.

Active flow arrests macrophase separation in this regime, counteracting domain coarsening due to thermodynamic coupling between active matter concentration and #nematic order. As a result, domains reach a characteristic size that decreases with increasing activity.

This regime is one part of the #PhaseDiagram we mapped out. Along with our other findings, you can read all about it here!

low #ReynoldsNumber #turbulence #ActiveTurbulence #CahnHilliard #ActiveMatter #NavierStokes #BerisEdwards #CondensedMatter #PhaseTransitions #TheoreticalPhysics #BioPhysics #StatisticalPhysics #FluidDynamics #ComputationalPhysics #Simulation #FieldTheory #paperthread #NewPaper #science #research #ActiveGel #activeNematic #analytic #cytoskeleton #hydrodynamics #MPI #theory

Active turbulence and spontaneous phase separation in inhomogeneous extensile active gels

We report numerical results for the hydrodynamics of inhomogeneous lyotropic and extensile active nematic gels. By simulating the coupled Cahn–Hilliard, Navier–Stokes, and Beris–Edwards equation for the evolution of the composition, flow and orientational order of an active nematic, we ask whether compositio

#SoftMatter have just published the results of a project that Renato Assante, Davide Marenduzzo, Alexander Morozov, and I recently worked on together! What did we do and what’s new? Briefly…

The #hydrodynamic behaviour of inhomogeneous #activeNematic gels (such as extensile bundles of #cytoskeletal filaments or suspensions of low #ReynoldsNumber swimmers) can be described by the time evolution of three coupled #PDEs.

Standard #ActiveGel #theory concludes, from a #LinearStabilityAnalysis of these equations, that fluctuations in concentration don’t significantly affect emergent #phaseBehaviour. However, this leaves #experimental #observations of visible inhomogeneities in #microtubule#kinesin mixtures unexplained. As we move away from the passive (quiescent) regime, past the onset of #SpontaneousFlow, and deeper into the active phase, #nonlinearities become more important. What role do concentration inhomogeneities play here?

Alongside #analytic techniques, we used an in-house #MPI-parallel code developed within the #Dedalus #spectral framework to investigate. We predict a #novel regime of #spontaneous #microphaseSeparation into active (nematically ordered) and passive domains. In this regime, active flow arrests macrophase separation, which is itself driven by the thermodynamic coupling between active matter concentration and #nematic order. As a result, domains do not #coarsen past a typical size, which decreases with increasing activity. This regime is one part of the #PhaseDiagram we mapped out.

Along with our other findings, you can read all about it here!

#CahnHilliard #ActiveMatter #NavierStokes #BerisEdwards #CondensedMatter #PhaseTransitions #TheoreticalPhysics #BioPhysics #StatisticalPhysics #FluidDynamics #ComputationalPhysics #Simulation #FieldTheory #paperthread #NewPaper #science #research

Active turbulence and spontaneous phase separation in inhomogeneous extensile active gels

We report numerical results for the hydrodynamics of inhomogeneous lyotropic and extensile active nematic gels. By simulating the coupled Cahn–Hilliard, Navier–Stokes, and Beris–Edwards equation for the evolution of the composition, flow and orientational order of an active nematic, we ask whether compositio