Basics of Numerical Weather Prediction (NWP):
1. THE HORIZONTAL MOMENTUM EQUATION:
\[
\frac{d\mathbf{V}}{dt} + f\hat{k} \times \mathbf{V} = -\nabla \phi + \frac{\sigma}{p_s} \frac{\partial \phi}{\partial \sigma} \nabla p_s + \mathbf{F}
\]
2. THE CONTINUITY EQUATION:
\[
\frac{\partial p_s}{\partial t} + \nabla \cdot (p_s \mathbf{V}) + \frac{\partial}{\partial \sigma}(p_s \dot{\sigma}) = 0
\]
3. THE THERMODYNAMIC ENERGY EQUATION:
\[
\frac{1}{R} \frac{d}{dt} \left[ \sigma \frac{\partial \phi}{\partial \sigma} \right] + \frac{RT}{C_p p} \left[ p_s \dot{\sigma} + \sigma\dot{p_s} \right] = -Q
\]
4. HYDROSTATIC EQUATION:
\[
\frac{\partial \phi}{\partial \sigma} = -\frac{RT_v}{\sigma}
\]
5. SURFACE PRESSURE TENDENCY EQUATION:
\[\displaystyle
\frac{\partial p_s}{\partial t} = -\int_{0}^{1} \nabla\cdot (p_s \mathbf{V}) \, d\sigma
\]
6. MOISTURE EQUATION:
\[\displaystyle
\frac{\partial}{\partial t} (p_s q) + \nabla\cdot (p_s q \mathbf{V}) + \frac{\partial}{\partial \sigma} (p_s q \dot{\sigma}) = p_s S
\]
The six primary unknowns are: \(\mathbf{V}\) (horizontal wind velocity), \(p_s\) (surface pressure), \(T\) (temperature), \(q\) (specific humidity or moisture), \(\phi\) (geopotential), and \(\dot{\sigma}\) (sigma velocity or vertical velocity in \(\sigma\)-coordinates).
#NWP #Weather #NumericalWeatherPrediction #Meteorology #Climate #ClimateScience #Earth #EarthScience #ClimateChange #ClimateSciences #Science #WeatherPrediction #Humidity #Moisture #Pressure #Velocity #SurfacePressure #HydrostaticEquation #WeatherPrediction #Ocean #Atmosphere #AOS #ClimateDynamics #WeatherDynamics #Geopotential #SigmaVelocity #VerticalVelocity #MoistureEquation #Thermodynamics #Dynamics #NavierStokes