While the holy grail of #InhomogeneousCosmology is to explain #DarkEnergy as an epiphenomenon of the cosmologically recent formation epoch of #CosmicVoids and other #LargeScaleStructure, #YonadavBarryGinat and #PedroGFerreira have gone for a more modest goal: keeping the #CosmologicalConstant but tacking on void formation to get a sort-of #BeyondLCDM inhomogeneous model that better matches #DES and #DESI results [1].

Apparent Dark-Energy Evolution from Cosmic Inhomogeneities
A mildly inhomogeneous universe with a cosmological constant may look like it contains evolving dark energy. We show that could be the case by modelling the inhomogeneities and their effects in three different ways: as clumped matter surrounded by voids, as back-reaction of small-scale structure on the overall expansion of the Universe, and, finally, as a large-scale curvature inhomogeneity. In all of these cases, the propagation of light is affected, and differs from that in a homogeneous and isotropic universe. The net result is that cosmological observables, such as angular diameter and luminosity distances, become distorted. We find, in all three models, that the inclusion of these effects pushes the distance-redshift relation towards closer agreement with recent data from both supernovae Ia from the Dark Energy Survey, and from baryon acoustic oscillations from the Dark Energy Spectroscopic Instrument. The amount of inhomogeneity in these models might not be enough to explain the entirety of the deviation from a cosmological constant, but is found to be of a similar order of magnitude, hinting that these data may be consistent with a universe dominated by a cosmological constant.




