Improving Forest Loss Mapping In Nepal Using Landtrendr Time-Series And Machine Learning
--
https://doi.org/10.1016/j.rsase.2025.101864 <-- share paper
--
“HIGHLIGHTS:
• ViT-based forest mask, multispectral ensemble LandTrendr and terrain shadow mask.
• District-level RF/XGBoost model training with expert-weighted validation.
• Outperformed GFC and REDD + AI benchmarks in accuracy and F1 performance.
• RF excelled in High Mountains/Himalayas; XGBoost in the lower Mountain regions.
• NBR contributed the most; snow-impacted forest loss uncertainty was observed..."
#Forestdisturbance #forest #disturbance #remotesensing #LandTrendr #workflow #timeseries #ViT #RF #XGBoost #GEE #Nepal #ForestNepal #spatial #GIS #mapping #earthobservation #landsat #Himalayas #mountains #alpine #vegetation #AI #multispectral #monitoring #spatialanalysis #spatiotemporal #loss #change #machinelearning #NDR #conservation #planning #policy #mitagion #ecology #Karnali #Bagmati, #Darchula #Siwalik #GlobalForestChange #Degradation
--
https://doi.org/10.1016/j.rsase.2025.101864 <-- share paper
--
“HIGHLIGHTS:
• ViT-based forest mask, multispectral ensemble LandTrendr and terrain shadow mask.
• District-level RF/XGBoost model training with expert-weighted validation.
• Outperformed GFC and REDD + AI benchmarks in accuracy and F1 performance.
• RF excelled in High Mountains/Himalayas; XGBoost in the lower Mountain regions.
• NBR contributed the most; snow-impacted forest loss uncertainty was observed..."
#Forestdisturbance #forest #disturbance #remotesensing #LandTrendr #workflow #timeseries #ViT #RF #XGBoost #GEE #Nepal #ForestNepal #spatial #GIS #mapping #earthobservation #landsat #Himalayas #mountains #alpine #vegetation #AI #multispectral #monitoring #spatialanalysis #spatiotemporal #loss #change #machinelearning #NDR #conservation #planning #policy #mitagion #ecology #Karnali #Bagmati, #Darchula #Siwalik #GlobalForestChange #Degradation



