Dataset and R codes for Elevational Patterns of Plant Species Richness: Insights from Western Himalayas

AbstractUnderstanding the patterns and drivers of species distribution has remained a central theme for biogeographical, conservation, and ecological research. This study aims to investigate the elevational patterns of plant species richness and compare the observed species richness with the predictions of the mid-domain effect (MDE) null model. By combining information from field observations and the published literature, we compiled a comprehensive database of the elevational distribution of plant species for three protected areas in the Western Himalayas. We used generalised linear model (GLM) and null model simulations to explore the elevational patterns of plant species richness. Our study revealed simple linear to complex non-linear patterns depending on the location and range of the elevational gradient. While non-linear unimodal patterns were common, a linear decreasing pattern was also observed. The observed species richness showed consistent deviations from the predictions of the mid-domain effect null model, suggesting that factors beyond the range constraints shape species richness patterns. These observations indicate that richness patterns are not solely generated by random processes, rather climatic gradients, ecological interactions, and topographic heterogeneity can shape these patterns. Understanding these factors can aid in predicting and managing the impacts of ongoing environmental changes on Himalayan biodiversity.How to useA comprehensive species checklist was compiled for each site by combining the information gathered from field surveys and literature surveys. The World Checklist of Vascular Plants (WCVP) was followed to standardise all the botanical names and their authorities. The README file provides a description of data files and directory structure. The "index.qmd" file presents a reproducible initial draft of the manuscript with all R codes used during the analysis.Fork or clone the linked github repository https://github.com/kumar-a/richness-patternsAlternatively, you can download all the files in the repository as .zipOpen the richness-patterns.Rproj file in RStudio and renderFeel free to reach out Abhishek Kumar, if scripts are not working or have any questions.CitationKumar, A., Patil, M., Kumar, P., & Singh, A. N. (2025). Elevational Patterns of Plant Species Richness: Insights from Western Himalayas. Forests, 16(10), 1591. https://doi.org/10.3390/f16101591

figshare
An Exploration of the Functionality and Usability of Open Research Platforms to Support Open Science – InfoDoc MicroVeille

🔬✨ ¡Haz que tu investigación llegue más lejos!
APPS LIBRES para compartir resultados científicos de forma abierta y accesible:

📤 Zenodo
📊 Figshare
📚 arXiv
📡 BURJC Digital

Estas plataformas permiten difundir tu trabajo y fomentar la ciencia abierta.

#cienciaabierta #investigaciónlibre #appslibres #opencience #urjc #repositoriocientífico #figshare #zenodo #arxiv #burjcdigital

📢 In late 2024, we launched a collaboration between The Carpentries and the Generalist Repository Ecosystem Initiative (GREI), aiming to explore how generalist data repositories such as #Dataverse, #Dryad, #Figshare, Mendeley Data, Open Science Framework, #Vivli, and #Zenodo might be more intentionally woven into the data skills we teach. 🌟

In the process, we also asked ourselves some important questions:
❓ What would it look like if open data repositories weren’t just add-ons at the end of a workflow, but upfront teaching concepts in our lessons?
❓ How can we position generalist repositories as active components in retrieving and processing datasets?
❓How can we give researchers the tools not just to write clean code, but to publish their work in ways that make it reusable and citable by others?

Learn about the important steps we have taken in this collaboration toward co-creating new lesson content: https://carpentries.org/blog/2025/06/update-on-the-carpentries-and-grei-collaboration/ 👏

Building Skills with Generalist Repositories: An Update on the Carpentries + GREI Collaboration

In late 2024, we launched a collaboration between The Carpentries and the Generalist Repository Ecosystem Initiative (GREI), aiming to explore how generalist data repositories such as Dataverse, Dryad, Figshare, Mendeley Data, Open Science Framework, Vivli, and Zenodo might be more intentionally woven into the data skills we teach. Since then, we’ve taken important steps toward that vision by co-creating new lesson content, running an in-person workshop, and inviting the community into a broader conversation about data sharing and discoverability.

The Carpentries

En fouillant les entrepôts de données à la recherche de photos sous licences libres, je suis tombé en 2023 sur le projet de recherche anglais "Cartes postales du bagne" https://cartespostalesdubagne.com/

J'ai copié les photos de #Figshare vers #WikimediaCommons https://commons.wikimedia.org/wiki/Category:Postcards_from_the_Bagne_-_Tourism_in_the_shadow_of_France%27s_overseas_penal_history

#Bagne #Guyane #VeilleESR

Cartes postales du bagne

Site for the AHRC funded Postcards from the Bagne project

Cartes postales du bagne

La newsletter #ScienceOuverte de l'#InstitutPasteur a compilé cette semaine une sélection d'articles autour des #EntrepôtsDeDonnées
­👉 #OnVousExplique : Les entrepôts de données
👉 Comment trouver un entrepôt de données dans le domaine biomédical ?
👉 Le répertoire d’entrepôts de données #re3data
👉 Les différences entre plusieurs entrepôts de données généralistes : #RechercheDataGouv, #Zenodo, #Dryad et #Figshare
👉 Déposer des données dans un entrepôt, que doit-on anticiper ? L’exemple de #GEO
👉 Disparition de certains entrepôts de données : quel impact sur l’accès aux #DonnéesDeRecherche ?

➡️ https://4682g.r.sp1-brevo.net/mk/mr/sh/OycXxko2a8zXNsWQVbhniEew/_eAVoGIw0pDv

Lettre d'information Science Ouverte

Schonmal was von #DOI (Document Object Identifier) gehört? Ist sowas wie eine ISBN, aber für wissenschaftliche Veröffentlichungen und vereinfacht das korrekte zitieren.

Für Citizen-Science ohne intitutionelle Anbindung bieten sich da drei Platformen an:

#figshare
#zenodo
#arXiv

\__
#CiteTheDOI #Science #OpenSource #OpenData #OpenResearch

Les différences entre plusieurs entrepôts de données généralistes : Recherche Data Gouv, Zenodo, Dryad et Figshare

Pour ouvrir ses données de recherche, il existe de très nombreux entrepôts de données. Parmi eux, les entrepôts dits « généralistes » ou « pluridisciplinaires » permettent le partage de tous types …

Open science : évolutions, enjeux et pratiques

Looking at the size of some of the articles I have in my Zotero library. Some of these are massive! 20 Mb, 60 Mb, come on!

We need to be a bit more careful with our article file sizes... High-res pics can be uploaded to a separate storage if needed, and maybe normal resolution versions can be in the paper?

I also found out that for some reason #Zotero grabs the explanatory video that sometimes comes with papers (e.g. in Neuron). These can be massive too and for some reason are not shown in the Zotero library, but they are there in your disk.

Edit: removed mention of #Figshare because it is apparently owned by one of the giant publishing companies..

#Academia #ResearchArticles

Inbox | Substack