Đừng viết prompt dễ vỡ! Với DSPy + CocoIndex, bạn có thể trích xuất dữ liệu bệnh nhân dạng có cấu trúc từ PDF chỉ bằng hình ảnh, không OCR, không regex. Định nghĩa schema Pydantic, DSPy tự tạo prompt, CocoIndex xử lý incremental, lưu vào PostgreSQL. #AI #LLM #DSPy #CocoIndex #trí_tuệ_nhân_tạo #xử_lý_dữ_liệu

https://dev.to/badmonster0/stop-writing-fragile-prompts-extract-structured-data-from-pdfs-with-dspy-cocoindex-10ln

Stop Writing Fragile Prompts: Extract Structured Data from PDFs with DSPy + CocoIndex

TL;DR: Traditional prompt engineering is fragile—small changes break everything. This tutorial shows...

DEV Community

Bedrock AgentCore Runtimeを使ってお知らせ文を解析して要約・イベントリマインドするアプリを作った
https://qiita.com/retore/items/2d6f903483e7f43bef87?utm_campaign=popular_items&utm_medium=feed&utm_source=popular_items

#qiita #AWS #bedrock #DSPy #BedrockAgentCore

Bedrock AgentCore Runtimeを使ってお知らせ文を解析して要約・イベントリマインドするアプリを作った - Qiita

課題意識 "AIを活用した開発"に関する知見はだいぶ溜まってきた と言いつつここ数ヶ月ClaudeCodeを使っていなかったので最新潮流に追いつけていないが…… 一方で,"AIを組み込んだアプリの開発"に関する知見はまだまだ足りない もちろん,SDKやFW(La...

Qiita

🤖 Công cụ “Compounding Engineering” biến repo Git thành AI tự cải tiến! Với chu trình review → triage → plan → learn, DSPy sẽ học từ mã nguồn, issue & tối ưu hoá liên tục, không giới hạn cửa sổ ngữ cảnh. Chạy offline bằng FAISS/Chroma, hỗ trợ OpenAI hay mô hình nội bộ. Cài đặt: `pip install dspy-compounding-engineering`. #AI #DSPy #Automation #Engineering #CôngNghệ #Repo #SelfImproving #MachineLearning

https://dev.to/dan-startegicauto/compounding-engineering-turn-your-repo-into-a-self-improvin

DSPydantic: Tối ưu hóa tự động Mô hình Pydantic bằng DSPy 🛠️ Công cụ giúp tối ưu hóa các mô hình Pydantic hiệu quả, kết hợp công nghệ DSPy. Thảo luận Reddit và nguồn code GitHub đã được chia sẻ. #Python #Pydantic #DSPy #AI #MachineLearning #CôngNghệSố

https://www.reddit.com/r/LocalLLaMA/comments/1po1lw1/dspydantic_autooptimize_your_pydantic_models_with/

🚀 Modaic: RL-native agente kit xuất sắc cùng DSPy! Tối ưu prompt thông qua RL, công cụ context (Context, GraphDB, v.v.) và kho\%C4%9F tái_agent. Mở nguồn, đếnhim từ phi\u1ec7mUIImage@ Sophie. Ơn đónότητα! #Modaic #RL #DSPy #AIdev #OpenSource #VietnameseAI

https://www.reddit.com/r/LocalLLaMA/comments/1oarzhf/modaic_a_new_rl_native_agent_development_kit/

If, like me, you weren’t familiar with #DSPy, this was a great talk given at the Databricks Data & AI summit to walk you through why you should care.

If you’re writing prompts by hand in your apps, stop now and read this article by @dbreunig

https://www.dbreunig.com/2025/06/10/let-the-model-write-the-prompt.html

Let the Model Write the Prompt

Notes from a talk I delivered at the 2025 Data + AI Summit, detailing the problem with prompts in your code and how DSPy can make everything better.

Drew Breunig
Let the LLM Write the Prompts: An Intro to DSPy in Compound Al Pipelines - Let the LLM Write the Prompts: An Intro to DSPy in Compound Al Pipelines
I'v... - https://simonwillison.net/2025/Oct/4/drew-on-dspy/#atom-everything #prompt-engineering #generative-ai #drew-breunig #geospatial #overture #llms #dspy #gis #ai
Let the LLM Write the Prompts: An Intro to DSPy in Compound Al Pipelines

I've had trouble getting my head around DSPy in the past. This half hour talk by Drew Breunig at the recent Databricks Data + AI Summit is the clearest explanation …

Simon Willison’s Weblog

# Context Engineering: Nâng Cấp AI Coding Agents Với DSPy GEPA

Bài viết mới về kỹ thuật Context Engineering giúp cải thiện hiệu suất AI Coding Agents bằng phương pháp DSPy GEPA. Một hướng tiếp cận thú vị để tối ưu hóa chất lượng code AI.

#AI #MachineLearning #AIcoding #DSPy #GEPA #KỹthuậtAI #PháttriệnAI

https://www.reddit.com/r/SideProject/comments/1nwaxxq/context_engineering_improving_ai_coding_agents/

AGI is just around the corner!

I'm learning to use DSPy with GEPA (Genetic-Pareto) prompt optimization. In GEPA a larger "teacher" LLM adjusts the prompt for a smaller "student" LM to perform a specific task as well as possible. The teacher will try many different prompts and evaluate the outcome, in my case the quality of a metadata extraction task.

The larger model (GPT-OSS 120B) just added this to the prompt for the smaller model (Gemma 3 4B):

> Good luck! 🎯

😅

#LLM #LocalLLM #DSPy #GEPA

🌘 使用 DSPy 偵測文件邊界
➤ 運用 DSPy 框架,提升文件結構識別的精準度
https://kmad.ai/Using-DSPy-to-Detect-Document-Boundaries
本文介紹如何運用 DSPy 框架,結合大型語言模型(LLM)的能力,精準偵測複雜文件中的邏輯邊界。透過將文件分頁處理、分類,再利用 LLM 的推理能力分析分頁類別與內容,即可有效識別不同章節(如主文、附錄、展覽品)的起訖點,進而提升後續資料提取的準確性。文章也展示了 DSPy 的模組化、模型混用(快速模型用於分類,智慧模型用於決策)以及非同步處理等關鍵優勢。
+ 這篇文章對於想利用 LLM 處理文件的開發者來說非常實用,DSPy 的設計讓複雜的流程變得易於管理。
+ 能將不同的 LLM 模型整合進工作流程,並透過 ReAct 模組進行工具調用,這真是 DSPy 的一大亮點!
#文件處理 #LLM #DSPy #邊界偵測
Using Dspy To Detect Document Boundaries

Using DSPy to Detect Document Boundaries

Kevin Madura