Kenneth De Baets

@djbirddanerd@ecoevo.social
380 Followers
552 Following
149 Posts
Paleobiologist @ Institute of Evolutionary Biology, University of Warsaw into #cephalopods, #parasites, funny tees and movies; Paleontology/Evolution Section Editor @PeerJ; previously @ Palaeofau #evolution #paleobiology #fossils #malacology #paleoparasitology Avatar from Painting by my favorite artist Jacek Yerka: https://www.yerkaland.com/language/en/ Team leader @PaleoParaDive
Twitter (locked at the moment)@djbirddanerd
Most publications available herehttps://www.researchgate.net/profile/Kenneth-De-Baets
University Websitehttps://ibe.biol.uw.edu.pl/en/people/dr-hab-kenneth-de-baets/
Lab websitehttps://kennethdebaets.weebly.com/lab-group.html

Just in time for
#FossilFriday: Fossil constraints on the origin and evolution of #Platyhelminthes are surprisingly concordant with modern molecular #phylogenies:

https://doi.org/10.1590/S1984-4689.v41.e24002

#flatworms

#paleobiology

#paleontology

#fossils

#paleoparasitology

#helminths

#flatworms

Fossil constraints on the origin and evolution of Platyhelminthes are surprisingly concordant with modern molecular phylogenies

ABSTRACT Trace fossils preserved with fossil worm-shaped remains suggest the presence of...

I am excited to announce the launch of PeerJ Open Advances in Zoology & my involvement as an Associate Editor! A new #OpenAccess journal that tackles the most pressing challenges in animal life. No author fees! #Zoology #OpenScience

https://peerj.com/journals/openadv-zoology

PeerJ – PeerJ Open Advances in Zoology

Modelling take-off moment arms in an ornithocheiraean pterosaur: https://peerj.com/articles/17678/ via @PeerJ
#paleobiology #paleontology #modelling #flying #Evolution
Modelling take-off moment arms in an ornithocheiraean pterosaur

Take-off is a vital part of powered flight which likely constrains the size of birds, yet extinct pterosaurs are known to have reached far larger sizes. Three different hypothesised take-off motions (bipedal burst launching, bipedal countermotion launching, and quadrupedal launching) have been proposed as explanations for how pterosaurs became airborne and circumvented this proposed morphological limit. We have constructed a computational musculoskeletal model of a 5 m wingspan ornithocheiraean pterosaur, reconstructing thirty-four key muscles to estimate the muscle moment arms throughout the three hypothesised take-off motions. Range of motion constrained hypothetical kinematic sequences for bipedal and quadrupedal take-off motions were modelled after extant flying vertebrates. Across our simulations we did not find higher hindlimb moment arms for bipedal take-off motions or noticeably higher forelimb moment arms in the forelimb for quadrupedal take-off motions. Despite this, in all our models we found the muscles utilised in the quadrupedal take-off have the largest total launch applicable moment arms throughout the entire take-off sequences and for the take-off pose. This indicates the potential availability of higher leverage for a quadrupedal take-off than hypothesised bipedal motions in pterosaurs pending further examination of muscle forces.

PeerJ
Morphology and vocalization comparison of the Houston Toad and the Dwarf American Toad: implications for their historic range: https://peerj.com/articles/17635/ via @PeerJLife #biodiversity #conservation #ecology #zoology #PopulationEcology #toads #amphibians
Morphology and vocalization comparison of the Houston Toad and the Dwarf American Toad: implications for their historic range

Documenting changes in the distribution and abundance of a given taxon requires historical data. In the absence of long-term monitoring data collected throughout the range of a taxon, conservation biologists often rely on preserved museum specimens to determine the past or present, putative geographic distribution. Distributional data for the Houston Toad (Anaxyrus houstonensis) has consistently been confounded by similarities with a sympatric congener, the Dwarf American Toad (A. americanus charlesmithi), both in monitoring data derived from chorusing surveys, and in historical data via museum specimens. In this case, misidentification can have unintended impacts on conservation efforts, where the Houston Toad is federally endangered, and the Dwarf American Toad is of least concern. Previously published reports have compared these two taxon on the basis of their male advertisement call and morphological appearance, often with the goal of using these characters to substantiate their taxonomic status prior to the advent of DNA sequencing technology. However, numerous studies report findings that contradict one another, and no consensus on the true differences or similarities can be drawn. Here, we use contemporary recordings of wild populations of each taxon to test for quantifiable differences in male advertisement call. Additionally, we quantitatively examine a subset of vouchered museum specimens representing each taxon to test previously reported differentiating morphometric characters used to distinguish among other Bufonids of East-Central Texas, USA. Finally, we assemble and qualitatively evaluate a database of photographs representing catalogued museum vouchers for each taxon to determine if their previously documented historic ranges may be larger than are currently accepted. Our findings reveal quantifiable differences between two allopatric congeners with respect to their male advertisement call, whereas we found similarities among their detailed morphology. Additionally, we report on the existence of additional, historically overlooked, museum records for the Houston Toad in the context of its putative historic range, and discuss errors associated with the curation of these specimens whose identity and nomenclature have not been consistent through time. These results bookend decades of disagreement regarding the morphology, voice, and historic distribution of these taxa, and alert practitioners of conservation efforts for the Houston Toad to previously unreported locations of occurrence.

PeerJ

Anatomy and size of Megateuthis, the largest belemnite

"We collected data of the proportions of the hard parts of some Jurassic belemnites in order to learn about shared characteristics in their gross anatomy. This knowledge is then applied to the Bajocian genus Megateuthis, which is the largest known belemnite genus worldwide."

https://doi.org/10.1186/s13358-024-00320-x

#paleobiology #fossilfriday #fossils #paleontology #evolution

Anatomy and size of Megateuthis, the largest belemnite - Swiss Journal of Palaeontology

Belemnite rostra are very abundant in Mesozoic marine deposits in many regions. Despite this abundance, soft-tissue specimens of belemnites informing about anatomy and proportions of these coleoid cephalopods are extremely rare and limited to a few moderately large genera like Passaloteuthis and Hibolithes. For all other genera, we can make inferences on their body proportions and body as well as mantle length by extrapolating from complete material. We collected data of the proportions of the hard parts of some Jurassic belemnites in order to learn about shared characteristics in their gross anatomy. This knowledge is then applied to the Bajocian genus Megateuthis, which is the largest known belemnite genus worldwide. Our results provide simple ratios that can be used to estimate belemnite body size, where only the rostrum is known.

SpringerOpen
Estimating body volumes and surface areas of animals from cross-sections
https://peerj.com/articles/17479/ via @PeerJ #paleobiology #evolution #size #paleontology
Estimating body volumes and surface areas of animals from cross-sections

Background Body mass and surface area are among the most important biological properties, but such information is lacking for some extant organisms and most extinct species. Numerous methods have been developed for body size estimation of animals for this reason. There are two main categories of mass-estimating approaches: extant-scaling approaches and volumetric-density approaches. Extant-scaling approaches determine the relationships between linear skeletal measurements and body mass using regression equations. Volumetric-density approaches, on the other hand, are all based on models. The models are of various types, including physical models, 2D images, and 3D virtual reconstructions. Once the models are constructed, their volumes are acquired using Archimedes’ Principle, math formulae, or 3D software. Then densities are assigned to convert volumes to masses. The acquisition of surface area is similar to volume estimation by changing math formulae or software commands. This article presents a new 2D volumetric-density approach called the cross-sectional method (CSM). Methods The CSM integrates biological cross-sections to estimate volume and surface area accurately. It requires a side view or dorsal/ventral view image, a series of cross-sectional silhouettes and some measurements to perform the calculation. To evaluate the performance of the CSM, two other 2D volumetric-density approaches (Graphic Double Integration (GDI) and Paleomass) are compared with it. Results The CSM produces very accurate results, with average error rates around 0.20% in volume and 1.21% in area respectively. It has higher accuracy than GDI or Paleomass in estimating the volumes and areas of irregular-shaped biological structures. Discussion Most previous 2D volumetric-density approaches assume an elliptical or superelliptical approximation of animal cross-sections. Such an approximation does not always have good performance. The CSM processes the true profiles directly rather than approximating and can deal with any shape. It can process objects that have gradually changing cross-sections. This study also suggests that more attention should be paid to the careful acquisition of cross-sections of animals in 2D volumetric-density approaches, otherwise serious errors may be introduced during the estimations. Combined with 2D modeling techniques, the CSM can be considered as an alternative to 3D modeling under certain conditions. It can reduce the complexity of making reconstructions while ensuring the reliability of the results.

PeerJ
Fossil-informed biogeographic analysis suggests Eurasian regionalization in crown Squamata during the early Jurassic: https://peerj.com/articles/17277/ via @PeerJ
#biodiversity, #biogeography, #EvolutionaryStudies, #EvolutionaryBiology, #herpetology, #paleontology, #Squamata #paleobiology, #zoology
Fossil-informed biogeographic analysis suggests Eurasian regionalization in crown Squamata during the early Jurassic

Background Squamata (lizards, snakes, and amphisbaenians) is a Triassic lineage with an extensive and complex biogeographic history, yet no large-scale study has reconstructed the ancestral range of early squamate lineages. The fossil record indicates a broadly Pangaean distribution by the end- Cretaceous, though many lineages (e.g., Paramacellodidae, Mosasauria, Polyglyphanodontia) subsequently went extinct. Thus, the origin and occupancy of extant radiations is unclear and may have been localized within Pangaea to specific plates, with potential regionalization to distinct Laurasian and Gondwanan landmasses during the Mesozoic in some groups. Methods We used recent tectonic models to code extant and fossil squamate distributions occurring on nine discrete plates for 9,755 species, with Jurassic and Cretaceous fossil constraints from three extinct lineages. We modeled ancestral ranges for crown Squamata from an extant-only molecular phylogeny using a suite of biogeographic models accommodating different evolutionary processes and fossil-based node constraints from known Jurassic and Cretaceous localities. We hypothesized that the best-fit models would not support a full Pangaean distribution (i.e., including all areas) for the origin of crown Squamata, but would instead show regionalization to specific areas within the fragmenting supercontinent, likely in the Northern Hemisphere where most early squamate fossils have been found. Results Incorporating fossil data reconstructs a localized origin within Pangaea, with early regionalization of extant lineages to Eurasia and Laurasia, while Gondwanan regionalization did not occur until the middle Cretaceous for Alethinophidia, Scolecophidia, and some crown Gekkotan lineages. While the Mesozoic history of extant squamate biogeography can be summarized as a Eurasian origin with dispersal out of Laurasia into Gondwana, their Cenozoic history is complex with multiple events (including secondary and tertiary recolonizations) in several directions. As noted by previous authors, squamates have likely utilized over-land range expansion, land-bridge colonization, and trans-oceanic dispersal. Tropical Gondwana and Eurasia hold more ancient lineages than the Holarctic (Rhineuridae being a major exception), and some asymmetries in colonization (e.g., to North America from Eurasia during the Cenozoic through Beringia) deserve additional study. Future studies that incorporate fossil branches, rather than as node constraints, into the reconstruction can be used to explore this history further.

PeerJ
How tapeworms interact with cancers: a mini-review https://peerj.com/articles/17196/ via @PeerJ #parasitology #immunity #health #cancer #helminth #tapeworm
How tapeworms interact with cancers: a mini-review

Cancer is one of the leading causes of death, with an estimated 19.3 million new cases and 10 million deaths worldwide in 2020 alone. Approximately 2.2 million cancer cases are attributed to infectious diseases, according to the World Health Organization (WHO). Despite the apparent involvement of some parasitic helminths (especially trematodes) in cancer induction, there are also records of the potential suppressive effects of helminth infections on cancer. Tapeworms such as Echinococcus granulosus, Taenia crassiceps, and more seem to have the potential to suppress malignant cell development, although in a few cases the evidence might be contradictory. Our review aims to summarize known epidemiological data on the cancer-helminth co-occurrence in the human population and the interactions of tapeworms with cancers, i.e., proven or hypothetical effects of tapeworms and their products on cancer cells in vivo (i.e., in experimental animals) or in vitro. The prospect of bioactive tapeworm molecules helping reduce the growth and metastasis of cancer is within the realm of future possibility, although extensive research is yet required due to certain concerns.

PeerJ
A new perspective on the taxonomy and systematics of Arvicolinae (Gray, 1821) including #voles, #lemmings, and #muskrats and a new time-calibrated phylogeny for the clade:
https://peerj.com/articles/16693/ via @PeerJ #Evolution #paleobiology #phylogeny #Taxonomy
A new perspective on the taxonomy and systematics of Arvicolinae (Gray, 1821) and a new time-calibrated phylogeny for the clade

Background Arvicoline rodents are one of the most speciose and rapidly evolving mammalian lineages. Fossil arvicolines are also among the most common vertebrate fossils found in sites of Pliocene and Pleistocene age in Eurasia and North America. However, there is no taxonomically robust, well-supported, time-calibrated phylogeny for the group. Methods Here we present well-supported hypotheses of arvicoline rodent systematics using maximum likelihood and Bayesian inference of DNA sequences of two mitochondrial genes and three nuclear genes representing 146 (82% coverage) species and 100% of currently recognized arvicoline genera. We elucidate well-supported major clades, reviewed the relationships and taxonomy of many species and genera, and critically compared our resulting molecular phylogenetic hypotheses to previously published hypotheses. We also used five fossil calibrations to generate a time-calibrated phylogeny of Arvicolinae that permitted some reconciliation between paleontological and neontological data. Results Our results are largely congruent with previous molecular phylogenies, but we increased the support in many regions of the arvicoline tree that were previously poorly-sampled. Our sampling resulted in a better understanding of relationships within Clethrionomyini, the early-diverging position and close relationship of true lemmings (Lemmus and Myopus) and bog lemmings (Synaptomys), and provided support for recent taxonomic changes within Microtini. Our results indicate an origin of ∼6.4 Ma for crown arvicoline rodents. These results have major implications (e.g., diversification rates, paleobiogeography) for our confidence in the fossil record of arvicolines and their utility as biochronological tools in Eurasia and North America during the Quaternary.

PeerJ

Malformed #trilobites from the Cambrian, Ordovician, and Silurian of Australia: most include examples of injuries from either failed #predation or moulting complications as well as a mangled carcass is ascribed to either successful predation or post-mortem #scavenging

https://doi.org/10.7717/peerj.16634 via @PeerJ #palaeontology #paleopathology #paleozoic #fossils

Malformed trilobites from the Cambrian, Ordovician, and Silurian of Australia

Biomineralised remains of trilobites provide important insight into the evolutionary history of a diverse, extinct group of arthropods. Their exoskeletons are also ideal for recording malformations, including evidence of post-injury repair. Re-examination of historic collections and the study of new specimens is important for enhancing knowledge on trilobite malformations across this diverse clade. To expand the records of these abnormalities and present explanations for their formation, we document eight malformed trilobite specimens, as well as one carcass, housed within the Commonwealth Palaeontological Collection at Geoscience Australia in Canberra. We present examples of Asthenopsis, Burminresia, Centropleura, Coronocephalus, Dolicholeptus, Galahetes, Papyriaspis, and Xystridura from Cambrian, Ordovician, and Silurian deposits of Australia. Most of the malformed specimens show W-, U-, or L-shaped indentations that reflect injuries from either failed predation or complications during moulting, and a mangled carcass is ascribed to either successful predation or post-mortem scavenging. We also uncover examples of teratologies, such as bifurcated pygidial ribs and pygidial asymmetry, in addition to evidence of abnormal recovery (i.e., fusion of thoracic segments) from a traumatic incident.

PeerJ