Acoustically Trapping Nanoparticles
Micrometer-sized particles can be trapped in place against a flow using acoustic waves. But smaller nano-sized particles feel less radiation pressure from acoustic waves, and so keep moving in the flow. But new work shows that it is possible to trap those nanoparticles with some additional help.
In this case, researchers seeded their flow with microparticles that were held in place by acoustic waves against the background flow. When nanoparticles were added to the mix, they remained trapped in the wells between microparticles due to a combination of acoustic forcing and the hydrodynamic shielding of the nearby large particles. (Image credit: P. Czerwinski; research credit: A. Pavlič and T. Baasch; via APS)
#acousticTrapping #acoustics #fluidDynamics #microfluidics #particleSuspension #physics #science










