New paper accepted! In which circunstances can we use abundant proxy preferences to quickly learn true preferences? I'm glad to announce our paper explores and proposes a model for one of these cases. Check out more on Yuchen's thread in Bluesky https://bsky.app/profile/zhuyuchen.bsky.social/post/3lo4n2tspys2w . #ICML2025 #ICML
Yuchen Zhu (@zhuyuchen.bsky.social)

New work! 💪🏻💥🤯 When Can Proxies Improve the Sample Complexity of Preference Learning? Our paper is accepted at @icmlconf.bsky.social 2025. Fantastic joint work with @spectral.space, Zhengyan Shi, @meng-yue-yang.bsky.social, @neuralnoise.com, Matt Kusner, @alexdamour.bsky.social. 1/n

Bluesky Social

Добро пожаловать в CAMELoT

Большие языковые модели ( LLM ) сталкиваются с трудностями при обработке длинных входных последовательностей из-за высоких затрат памяти и времени выполнения. Модели с расширенной памятью стали многообещающим решением этой проблемы, но текущие методы ограничены объёмом памяти и требуют дорогостоящего повторного обучения для интеграции с новой LLM . В этой статье мы познакомимся с модулем ассоциативной памяти , который может быть связан с любой предварительно обученной LLM без повторного обучения, что позволяет ему обрабатывать произвольно длинные входные последовательности. В отличие от предыдущих методов этот модуль ассоциативной памяти объединяет представления отдельных токенов в непараметрическую модель распределения. Эта модель управляется динамически путём надлежащего балансирования новизны и свежести входящих данных. Извлекая информацию из консолидированной ассоциативной памяти, базовый LLM на стандартных тестах достигает лучших результатов. Эта архитектура называется CAMELoT ( Consolidated Associationive Memory Enhanced Long Transformer ). Она демонстрирует превосходную производительность даже при крошечном контекстном окне в 128 токенов, а также обеспечивает улучшенное контекстное обучение с гораздо большим набором демонстраций.

https://habr.com/ru/companies/first/articles/869632/

#CAMELoT #Машинное_обучение #ICML

Добро пожаловать в CAMELoT

Большие языковые модели ( LLM ) сталкиваются с трудностями при обработке длинных входных последовательностей из-за высоких затрат памяти и времени выполнения. Модели с расширенной памятью стали...

Хабр
Speaking of machine learning, I once had a paper rejected from #ICML (International Conference on Machine Learning) in the early 2000s because it "wasn't about machine learning" (minor paraphrase of comments in 2 of the 3 reviews if I recall correctly). That field was consolidating--in a bad way, in my view--around a very small set of ideas even back then. My co-author and I wrote a rebuttal to the rejection, which we had the opportunity to do, arguing that our work was well within the scope of machine learning as set out by Arthur Samuel's pioneering work in the late 1950s/early 1960s that literally gave the field its name (Samuel 1959, Some studies in machine learning using the game of checkers). Their retort was that machine learning consisted of: learning probability distributions of data (unsupervised learning); learning discriminative or generative probabilistic models from data (supervised learning); or reinforcement learning. Nothing else. OK maybe I'm missing one, but you get the idea.

We later expanded this work and landed it as a chapter in a 2008 book Multiobjective Problem Solving from Nature, which is downloadable from https://link.springer.com/book/10.1007/978-3-540-72964-8 . You'll see the chapter starting on page 357 of that PDF (p 361 in the PDF's pagination). We applied a technique from the theory of coevolutionary algorithms to examine small instances of the game of Nim, and were able to make several interesting statements about that game. Arthur Samuel's original papers on checkers were about learning by self-play, a particularly simple form of coevolutionary algorithm, as I argue in the introductory chapter of my PhD dissertation. Our technique is applicable to Samuel's work and any other work in that class--in other words, it's squarely "machine learning" in the sense Samuel meant the term.

Whatever you may think of this particular work of mine, it's bad news when a field forgets and rejects its own historical origins and throws away the early fruitful lines of work that led to its own birth. #GenerativeAI threatens to have a similar wilting effect on artificial intelligence and possibly on computer science more generally. The marketplace of ideas is monopolizing, the ecosystem of ideas collapsing. Not good.

#MachineLearning #ML #AI #ComputerScience #Coevolution #CoevoutionaryAlgorithm #checkers #Nim #BoardGames
Multiobjective Problem Solving from Nature

SpringerLink
ICML 2024 | 南開大學提出反向傳播全新改進策略,不降速、大幅提升顯存效率
https://www.headline01.com/a/YsT3GO65C4GUnp5mxQsqTg-E0BECE98.html
#ICML 2024 #大學 #策略
ICML 2024 | 南開大學提出反向傳播全新改進策略,不降速、大幅提升顯存效率

今日視界
🎉 Two papers from the #MachineLearning and #NLP teams @LipnLab were accepted to #ICML!
▶️ The paper "Delaunay Graph: Addressing Over-Squashing and Over-Smoothing Using Delaunay Triangulation" by H. Attali, D. Buscladi, N. Pernelle presents a novel graph rewiring method that incorporates node features with low complexity to alleviate both Over-Squashing and Over-Smoothing issues.
🔗 https://sites.google.com/view/hugoattali/research?authuser=0
Hugo Attali - Research

My research interests lie in how to quantify the role of graph topology in GNNs and to what extent we can improve the structural properties of the input graph to better exchange messages between layers.

Founding AI Engineer, Agents

Location: New York Employment Type: Full-time Application Link: https://jobs.ashbyhq.com/Occam/529291c4-6d0b-491e-a502-3d324f221107 About Occam AI We’re on a mission to breathe life into software by giving it action taking abilities. We are leveraging …

ai-jobs.net
AI Engineer Intern, Agents

Location: New York (Flexibility to work remotely for exceptional candidates) Employment Type: Internship Application Link: https://jobs.ashbyhq.com/Occam/a68b756a-2567-4741-a59b-7d77ae3b1825 About Occam AI We’re on a mission to breathe life into software by giving …

ai-jobs.net

TimesFM: A decoder-only foundation model for time-series forecasting

«Este modelo é baseado em modelos descodificadores pré-treinados num grande “corpus” de séries temporais composto por conjuntos de dados do mundo reais e sintéticos. Os resultados experimentais sugerem que o modelo pode produzir previsões precisas em diferentes domínios, horizontes de previsão e granularidades temporais»

  https://arxiv.org/html/2310.10688v2

#TimeSeries #Forecasting #ICML

A decoder-only foundation model for time-series forecasting

#ICML will have a Position Paper track. "The goal of this track is to highlight papers that stimulate (productive, civil) discussion on timely topics that need our community’s input" #AI

Read more here: https://icml.cc/Conferences/2024/CallForPositionPapers

ICML 2024

Perhaps #AI language learning can be a byproduct of trying to function in a real world, like children do. "...perhaps the best way forward is to combine the approaches by augmenting emergent language learning with direct language supervision."

[2306.08400] Simple Embodied Language Learning as a Byproduct of Meta-Reinforcement Learning. #ICML

https://arxiv.org/abs/2306.08400

https://doi.org/10.48550/arXiv.2306.08400

Simple Embodied Language Learning as a Byproduct of Meta-Reinforcement Learning

Whereas machine learning models typically learn language by directly training on language tasks (e.g., next-word prediction), language emerges in human children as a byproduct of solving non-language tasks (e.g., acquiring food). Motivated by this observation, we ask: can embodied reinforcement learning (RL) agents also indirectly learn language from non-language tasks? Learning to associate language with its meaning requires a dynamic environment with varied language. Therefore, we investigate this question in a multi-task environment with language that varies across the different tasks. Specifically, we design an office navigation environment, where the agent's goal is to find a particular office, and office locations differ in different buildings (i.e., tasks). Each building includes a floor plan with a simple language description of the goal office's location, which can be visually read as an RGB image when visited. We find RL agents indeed are able to indirectly learn language. Agents trained with current meta-RL algorithms successfully generalize to reading floor plans with held-out layouts and language phrases, and quickly navigate to the correct office, despite receiving no direct language supervision.

arXiv.org