It seems like the basic building blocks of a topological quantum computer were demonstrated experimentally for the first time.

https://arxiv.org/abs/2601.20956

The promise of topological quantum computer – which would be resistant to errors because it would encode quantum information using trajectories of weird “quasiparticles” called anyons – is one of the main motivations why people investigate topological orders like fractional quantum Hall effect or spin liquids. The catch about this study is that, as far as I understand, it lacks the required stability, which arises from the fact that the topological order is exhibited by the ground state of the system (lowest energy), and the anyons are lowest excitations (lowest energies above the ground state). Here, as far as I understand, the topologically ordered state was created inside a quantum computer, with no reference to energy. Still, this is one step closer to realizing topological quantum computation. Also, the study uses quantum gates based both on anyon braiding – “winding” their trajectories around each other – and “fusion”, i.e. merging anyons with each other. I was not aware you can use fusion in this way.

#science #physics #quantum #CondensedMatter #CondMat #QuantumComputing #TopologicalOrder #anyons

Universal Topological Gates from Braiding and Fusing Anyons on Quantum Hardware

Topological quantum computation encodes quantum information in the internal fusion space of non-Abelian anyonic quasiparticles, whose braiding implements logical gates. This goes beyond Abelian topological order (TO) such as the toric code, as its anyons lack internal structure. However, the simplest non-Abelian generalizations of the toric code do not support universality via braiding alone. Here we demonstrate that such minimally non-Abelian TOs can be made universal by treating anyon fusion as a computational primitive. We prepare a 54-qubit TO wavefunction associated with the smallest non-Abelian group, $S_3$, on Quantinuum's H2 quantum processor. This phase of matter exhibits cyclic anyon fusion rules, known to underpin universality, which we evidence by trapping a single non-Abelian anyon on the torus. We encode logical qutrits in the nonlocal fusion space of non-Abelian fluxes and, by combining an entangling braiding operation with anyon charge measurements, realize a universal topological gate set and read-out, which we further demonstrate by topologically preparing a magic state. This work establishes $S_3$ TO as simple enough to be prepared efficiently, yet rich enough to enable universal topological quantum computation.

arXiv.org

I am still alive, and there are big news for the project – news that are over one month overdue, but I was so focused on writing grant proposals that I couldn’t find time to write about it. Long story short: we finished the preprint of our spin liquid paper (https://arxiv.org/pdf/2512.05630). This work originated much before I came to Darrick Chang’s group, thus I am only a third author, but I did my part within the QUINTO project.

What is it about? Basically, atoms can make photons interacting with each other. In general, the interaction of many simple objects can lead to unusual, counterintuitive behavior. For example, many interacting electrons can form fractional quantum Hall states, and many interacting spins can form spin liquids – both being complicated quantum states, whose unusual properties manifest themselves with emergence of “quasiparticles” – objects that behave like individual particles, although in reality they are collective states of many particles. These quasiparticles can behave unlike any elementary particle found in nature – for example, they can have a fraction of single electron charge, and be neither bosons nor fermions but “anyons”. In the paper, we ask: can we observe similar effects with atoms and light?

[1/3]

#physics #science #quantum #CondMat #CondensedMatter #QuantumOptics #ColdAtoms #AtomicPhysics

Promising new superconducting material discovered with the help of AI

Tohoku University and Fujitsu Limited have successfully used AI to derive new insights into the superconductivity mechanism of a new superconducting material.

Phys.org

Topologically ordered states of matter are characterized by fascinating non-local quantum correlations in the many-body wave function. However, deciding whether a quantum state is topologically ordered or not is extremely difficult. A large part of the problem is that so far, signatures like the topological entanglement entropy could not be efficiently computed.

We are happy to present a framework for the computation of topological order that provides an exponential speedup over existing methods: https://dx.doi.org/10.1088/1367-2630/ae3598

#quantum #physics #condensedmatter #condmat

Radware Bot Manager Captcha

Anomalous electronic state opens pathway to room-temperature superconductivity

Superconductive materials can conduct electricity with no resistance, but typically only at very low temperatures. Realizing superconductivity at room temperature could enable advanced, energy-efficient electronics and other technologies.

Phys.org

◍ Diverse particles form identical geometric patterns when confined, model reveals

https://phys.org/news/2025-11-diverse-particles-identical-geometric-patterns.html

#materials #physics #condmat #phasetransition #granular

Diverse particles form identical geometric patterns when confined, model reveals

Particles as different as soap bubbles and ball bearings can be made to arrange themselves in exactly the same way, according to a new study that could unlock the creation of brand new materials—including those with promising biomedical applications.

Phys.org

⚡ Pioneering recipe for conductive plastics paves way for human bodies to go online

https://techxplore.com/news/2025-09-recipe-plastics-paves-human-bodies.html

#materials #plastics #condmat #chemistry #bionics

Pioneering recipe for conductive plastics paves way for human bodies to go online

It's moldable, biocompatible and glitters like gold. Plastic that can conduct an electric charge is a material that can be used for everything from sensors that can monitor our health to self-cooling clothing or electronic adhesive plasters that can be applied to the skin and send data directly to a mobile phone.

Tech Xplore
Atomic-level engineering enables new alloys that won't break in extreme cold

Navigating the extreme cold of deep space or handling super-chilled liquid fuels here on Earth requires materials that won't break. Most metals become brittle and fracture at such low temperatures. However, new research is pioneering an approach to build metal structures atom by atom to create tough and durable alloys that can withstand such harsh environments.

Phys.org
3D-printed superconductor achieves record performance with soft matter approach

Nearly a decade after they first demonstrated that soft materials could guide the formation of superconductors, Cornell researchers have achieved a one-step, 3D printing method that produces superconductors with record properties.

Phys.org

💎 Scientists design superdiamonds with theoretically predicted hexagonal crystal structure

https://phys.org/news/2025-08-scientists-superdiamonds-theoretically-hexagonal-crystal.html

#condmat #materials #diamond #crystals #physics #chemistry

Scientists design superdiamonds with theoretically predicted hexagonal crystal structure

The brilliantly shiny diamond is more than just pretty; it's one of the hardest minerals on Earth, with a name derived from the Greek word adámas, meaning unbreakable. Scientists have now engineered a harder form of diamond known as bulk hexagonal diamond (HD)—a crystalline structure that has been theorized for over half a century to have physical properties superior to those of conventional diamond.

Phys.org