Джентльменский набор LLM-инженера: гайд по экосистеме языковых моделей
Каждый, кто хоть раз вводил pip install transformers , наблюдал, как терминал начинает безостановочно выводить простыню зависимостей: pytorch , accelerate , bitsandbytes , peft и многие, многие другие. Но если PyTorch является фундаментом, настоящим Атлантом, на плечах которого держатся тензорные вычисления, то какую роль играют его помощники? В этой статье мы проведём ревизию джентльменского набора LLM инженера. Для этого мы изучим функционал, методы работы и даже заглянем в исходный код таких библиотек, как PyTorch, Transformers, Accelerate, Bitsandbytes, PEFT и Unsloth. Эти знания позволят вам видеть за списком импортов не просто названия, а четкую структуру, на которой держится ваше приложение.
https://habr.com/ru/articles/984248/
#LLMэкосистема #pytorch #accelerate #transformers #bitsandbytes #peft #unsloth #распределённое_обучение #граф_вычислений #квантование




