885: Python Polars: The Definitive Guide — with Jeroen Janssens and Thijs Nieuwdorp

YouTube
🌘 dataframely – 一個宣告式、🐻‍❄️ 原生資料框驗證函式庫
➤ 提升 Polars 資料管道的健壯性與可讀性
https://tech.quantco.com/blog/dataframely
QuantCo 工程部落格介紹了他們開發的 dataframely,一個專為 Polars 資料框設計的宣告式驗證函式庫。由於現有工具(如 pandera 和 patito)在處理依賴型資料框、軟性驗證、測試資料生成和嚴格靜態類型檢查方面存在不足,QuantCo 團隊開發了 dataframely,旨在提高 Polars 資料管道的健壯性和可讀性。它允許開發者定義資料框結構,強制執行運行時約束,並提供更強大的類型提示,以提升程式碼的可維護性和效率。
+ 終於有專為 Polars 設計的驗證工具了!以前用 Pandas 的工具總覺得彆扭,期待能改善資料品質和開發效率。
+ 宣告式驗證的概念很好,能讓程式碼更清晰易懂。希望能看到更多範例和文件,方便快速上手。
#開發者工具 #資料驗證 #Polars #Python
dataframely — A declarative, 🐻‍❄️-native data frame validation library

We present dataframely, a declarative data frame validation library with first-class support for polars data frames.

QuantCo Engineering Blog

If anyone is looking at using #polars for dataframes in #rust , having done it myself for a few months at work, here are my thoughts:

1. It works and it's fast. I'd use it again.
2. The /rust-specific/ documentation is really barebones. However, the python docs are good, so you can read those and the translation isn't too bad. However, this is definitely the largest pain point.

If anyone has any questions about using the crate, feel free to ask and I'll answer if I can!

wow, #polars is good - just read-from-url filter/select/unique super straightforward

#python

I am transforming a project from #pandas to #polars and I already like it! I don't want to talk bad about #pandas, it did a lot for the data science community. But, beside of being blazingly fast, the syntax of #polars is much more logic and consistent!

Struggling with slow GIS processing? Tony Albanese's article demonstrates a lightning-fast method for generating transects using #Geopandas and #Polars, reducing processing time from days to seconds.

https://towardsdatascience.com/harnessing-polars-and-geopandas-to-generate-millions-of-transects-in-seconds-d37b176a0b57/

Harnessing Polars and Geopandas to Generate Millions of Transects in Seconds | Towards Data Science

Making the bears play nice

Towards Data Science
AWS LambdaでDuckDBとAWS Data Wrangler、Polarsの処理性能を比較してみた | DevelopersIO

AWS LambdaでDuckDBとAWS Data Wrangler、Polarsの処理性能を比較してみた | DevelopersIO

Polars для обработки JSON и Parquet

Привет, Хабр! Сегодня рассмотрим тему обработки временных рядов с помощью Polars. Начну с того, что в Pandas для агрегации временных рядов принято использовать метод resample() . Он удобен и привычен, но имеет свои ограничения по производительности и гибкости. Polars, в свою очередь, имеет метод groupby_dynamic() , который позволяет группировать данные по динамическим временным интервалам.

https://habr.com/ru/companies/otus/articles/892812/

#polars #временные_ряды #обработка_временных_рядов #аналитика

Polars для обработки JSON и Parquet

Привет, Хабр! Сегодня рассмотрим тему обработки временных рядов с помощью Polars. Почему groupby_dynamic() лучше resample() из Pandas Начну с того, что в Pandas для агрегации...

Хабр

Polars vs. pandas – Python のデータフレームライブラリを徹底比較
#Python #Pycharm #Datascience #Pandas #Polars

https://blog.jetbrains.com/pycharm/2025/02/polars-vs-pandas

Polars와 pandas 비교: 어떻게 다를까요? | The PyCharm Blog

지난 해에 Python DataFrame의 발전을 지켜보신 분이라면 대규모 데이터세트 작업용으로 설계된 강력한 DataFrame 라이브러리인 Polars를 들어보셨을 겁니다. PyCharm에서 Polars를 사용해 보세요 Spark, Dask나 Ray와 같은 다른 대용량 데이터세트 라이브러리와는 달리 Polars는 한 대의 시스템에서 사용되도록 설계되었기

The JetBrains Blog

Do I know any #Polars contributor or maintainer? I would love to help with that bug/exploration, but I am not sure where to start!

https://github.com/pola-rs/polars/issues/21851 #Python #Rust