Real-Time, Court-Admissible Crypto Intelligence at 1/400th the Cost of Inferior Legacy Systems The explosion of blockchain data isn't just a challenge; it's a crisis for conventional analytics. Financial institutions, investigators, and law enforcement agencies are hamstrung by tools that are too slow, expensive, and built on legacy database technologies incapable of keeping pace. Critical insights
Understanding factors that influence software development velocity is crucial for engineering teams and organizations, yet empirical evidence at scale remains limited. A more robust understanding of the dynamics of cycle time may help practitioners avoid pitfalls in relying on velocity measures while evaluating software work. We analyze cycle time, a widely-used metric measuring time from ticket creation to completion, using a dataset of over 55,000 observations across 216 organizations. Through Bayesian hierarchical modeling that appropriately separates individual and organizational variation, we examine how coding time, task scoping, and collaboration patterns affect cycle time while characterizing its substantial variability across contexts. We find precise but modest associations between cycle time and factors including coding days per week, number of merged pull requests, and degree of collaboration. However, these effects are set against considerable unexplained variation both between and within individuals. Our findings suggest that while common workplace factors do influence cycle time in expected directions, any single observation provides limited signal about typical performance. This work demonstrates methods for analyzing complex operational metrics at scale while highlighting potential pitfalls in using such measurements to drive decision-making. We conclude that improving software delivery velocity likely requires systems-level thinking rather than individual-focused interventions.
單從原值(空心三角點)的走法,可以說隨著時間上升又下降,而趨勢線也因為醉心短期趨勢期間發生了上升趨勢轉為下降趨勢的情況
如果你還無法做到這些,並且想學習數據分析,那麼「AI數據分析」將是你在AI時代下最棒的數據分析利器。
長期追蹤結果: https://sites.google.com/view/usinflation/PCE
~~~~
轉折即時 洞見無界
告別滯後模型
讓趨勢主動客觀說話
~~~~
#經濟 #財經 #通貨膨脹 #通脹 #數據分析 #資料分析 #物價 #AI #MathAI #AI數據分析 #課程 #economy #USA #inflation #usinflation #economywatch #PCE
持續追蹤美國通貨膨脹率趨勢的過程中,近期很明顯可以發現美國對通貨膨脹率的控制。「數據驅動決定政策」的原則,讓數據被操控的可能性大大增加。
我們還能看到,美國在新冠肺炎前的通貨膨脹率短期趨勢變化是一回事。新冠肺炎時期是一回事,而聯準會升息後的通貨膨脹率又是一回事。最後就是2024總統大選開始又是一回事。
這明顯的政治週期和政府干預影響美國的通貨膨脹率趨勢。這些是你使用各種分析方法都無法抓出來的客觀結果。
如果你還無法做到這些,並且想學習數據分析,那麼「AI數據分析」將是你在AI時代下最棒的數據分析利器。
長期追蹤:https://sites.google.com/view/usinflation
~~~~
轉折即時 洞見無界
告別滯後模型
讓趨勢主動客觀說話
~~~~
#經濟 #財經 #通貨膨脹 #通脹 #數據分析 #資料分析 #物價 #AI #MathAI #AI數據分析 #課程 #economy #USA #inflation #usinflation #economywatch