Тыкай и кидай голосовухи: как ускорить сбор данных для мультимодальности

Привет! Мы собираем много разных данных и часто перед заказчиком стоит большая описательная задача в области задач компьютерного зрения: детально и максимально подробно описывать всё, что присутствует на изображении или видео. В деталях описывать картинку с помощью текста — трудоемкая задача для человека. На днях исследователи из института Аллена предложили интересный способ оптимизации такой задачи. А так как мы, в хорошем смысле, поехавшие на качестве данных, то пройти мимо было невозможно. И это достаточно интересно, чтобы попробовать перенести их пайплайн на свою платформу и замериться. И предварительно, да, похоже, это новая веха экспериментов в такой разметке. Давайте разбираться.

https://habr.com/ru/articles/847780/

#cv #markup #labeling #labeling_tool #разметка #разметка_данных #разметка_датасета #компьютерное_зрение #gigachat #сбор_данных

Тыкай и кидай голосовухи: как ускорить сбор данных для мультимодальности

Привет! Мы собираем много разных данных и часто перед заказчиком стоит большая описательная задача в области задач компьютерного зрения: детально и максимально подробно описывать всё, что присутствует...

Хабр

Corner-кейсы в разработке и разметке данных: что это такое, как с этим жить и при чем тут Достоевский?

Изначально я писал с прицелом на разметку, но все написанное оказалось легко перекладываемо и на разработу софта, да и вообще на любые сложные процессы. На обложке — главный corner-case всея Руси от Достоевского. Про такое в общем смысле и поговорим.

https://habr.com/ru/articles/846932/

#ai #ии #ии_и_машинное_обучение #машинное+обучение #разметка #разметка_данных #разметка_датасета #cv #labeling_tool

Corner-кейсы в разработке и разметке данных: что это такое, как с этим жить и при чем тут Достоевский?

Изначально я писал с прицелом на разметку, но все написанное оказалось легко перекладываемо и на разработу софта, да и вообще на любые сложные процессы. На обложке — главный corner-case всея Руси от...

Хабр

Sapiens: фундаментальная CV-модель для задач с людьми

Почти две недели назад из недр одной из самых прорывных AI лабораторий мира вышла новая классная модель (а точнее — семейство моделей) компьютерного зрения, но данная новость в русскоязычном интернете прошла будто бы без энтузиазма. А зря — штука довольно хороша. Итак, у нас есть семейство моделей, которое из коробки поможет решить «четыре фундаментальные задачи человека в CV» (цитата авторов) и давайте посмотрим, что же там есть есть и как это работает. Скажу сразу, что мне хотелось написать скорее напоминательно-обзорный пост о том, что такая модель вообще вышла и чего ожидать от нее в дальнейшем. В живых проектах мы пока это не использовали (но однозначно будем) и свой большой обзор писать рановато, но я поигрался с демками и да — результаты повторяемы. Технических деталей будет минимум — пейпер хорош и не стоит лишать удовольствия его прочитать самому целиком, особенно, если вы занимаетесь похожими задачами.

https://habr.com/ru/articles/841058/

#cv #computer_vision #компьютерное_зрение #open_source #разметка #разметка_данных #разметка_изображений #ии #ai #data_mining

Sapiens: фундаментальная CV-модель для задач с людьми

Почти две недели назад из недр одной из самых прорывных AI лабораторий мира вышла новая классная модель (а точнее — семейство моделей) компьютерного зрения, но данная новость в русскоязычном интернете...

Хабр

Разбор SAM2 через колено в голову или революция в разметке видео

На днях вышла новая версия модели для сегментации видео - SAM2, которая не только стала быстрее выше сильнее предшественника, но и нацелилась поменять разметку видео также, как с картинками это проделала первая версия модели. Оригинальную SAM мы используем для разметки в достаточно промышленных масштабах (в том числе и для видео), и потому пройти мимо препарирования SAM2 было невозможно, но так как модель уже по верхам разобрали в тг-каналах, пейпер хорош, а то, что модель феноменальна - понятно без слов, то я постараюсь поглубже разобрать подготовку датасета/разметку и саму модель именно на сложных примерах с моими комментариями. Легкое чтиво и много гифок — самое то для бодрого старта понедельничка!

https://habr.com/ru/articles/833692/

#компьютерное_зрение #ии #ai #cv #разметка_данных #разметка #датасет #разметка_изображений #data_mining #computer_vision

Разбор SAM2 через колено в голову или революция в разметке видео

На днях вышла новая версия модели для сегментации видео — SAM2, которая не только стала быстрее-выше-сильнее предшественника, но и нацелилась поменять весь процесс разметки видео, как с картинками это...

Хабр

Бот в блокноте — как я написал конструктор Телеграм-ботов для гуманитариев

Если вы когда-либо мечтали создать своего Телеграм-бота, но вас пугали технические сложности и необходимость программирования или рисования блок-схем, то у меня для вас отличные новости. Представляю вам Бот в блокноте — конструктор Телеграм-ботов, который я разработал специально для тех, кто далёк от мира IT, но хочет легко и быстро создать своего бота. В отличие от традиционных конструкторов с блок-схемами, я предлагаю более гибкий и удобный способ работы. Блок-схемы могут быть сложными и запутанными, особенно когда проект становится большим.

https://habr.com/ru/articles/832570/

#телеграм #телеграмбот #телеграмботы #конструктор #визуальное_программирование #разметка

Бот в блокноте — как я написал конструктор Телеграм-ботов для гуманитариев

Если вы когда-либо мечтали создать своего Телеграм-бота, но вас пугали технические сложности и необходимость программирования или рисования блок-схем, то у меня для вас отличные новости. Представляю...

Хабр

[Перевод] Что такое supervised fine-tuning?

Supervised fine-tuning (SFT) — это методика, применяемая для адаптации предварительно обученных Large Language Model (LLM) под конкретную задачу при помощи размеченных данных. В процессе SFT предварительно обученные LLM подвергаются fine-tuning на основе размеченного датасета при помощи методик обучения с учителем. Веса модели выравниваются на основании градиентов, полученных из функции потерь конкретной задачи, измеряющей разность между прогнозами LLM и эталонной разметкой. Этот процесс позволяет модели обучаться паттернам и нюансам конкретной задачи, адаптируя её параметры в соответствии с распределением конкретных данных и требований задачи. SFT, обычно выполняемый после предварительного обучения модели, применяется для того, чтобы научить модель следовать переданным пользователем инструкциям. Он более вычислительно затратен, чем fine-tuning без учителя, но и имеет больше шансов достичь повышенной точности. Объём необходимого дообучения зависит от сложности задачи и размера датасета. В случае простого переноса стиля с использованием моделей OpenAI наподобие GPT-3.5 или GPT-4 для получения превосходных результатов обычно достаточно 30-50 высококачественных примеров. Чтобы преобразовать базовую Large Language Model (LLM) в выполняющую инструкции LLM (например, превратить Mistral в Mistral Instruct), обычно требуется обучение на десятках тысяч примеров. Дообучение Zephyr 7b выполнялось на 16 GPU Nvidia A100 в течение примерно четырёх часов. Это можно считать примером отправной точки для модели с 7 миллиардами параметров.

https://habr.com/ru/articles/829318/

#Машинное_обучение #LLM #finetuning #Трансферное_обучение #LoRA #QLoRA #SFT #Supervised_finetuning #датасет #размета_данных #dataset #данные #data #разметка

Что такое supervised fine-tuning?

Supervised fine-tuning (SFT) — это методика, применяемая для адаптации предварительно обученных Large Language Model (LLM) под конкретную задачу при помощи размеченных данных. В процессе SFT...

Хабр

[Перевод] Как с помощью supervised fine-tuning кастомизировать LLM

В быстро развивающейся сфере Natural Language Processing (NLP) fine-tuning стал мощным и эффективным инструментом адаптации предварительно обученных больших языковых моделей (Large Language Model, LLM) под конкретные задачи. Предварительно обученные LLM (например, семейство GPT) продемонстрировали существенный прогресс в понимании и генерации языка. Однако эти предварительно обученные модели обычно учатся на огромных объёмах текстовых данных при помощи обучения без учителя и могут быть не оптимизированы под узкую задачу. Fine-tuning позволяет закрыть этот пробел, воспользовавшись преимуществами общего понимания языка, полученными во время предварительного обучения, и адаптировав их к целевой задаче при помощи обучения с учителем. Благодаря fine-tuning предварительно обученной модели на специфичном для задачи датасете разработчики NLP могут достигать впечатляющих результатов с гораздо меньшим объёмом данных обучения и вычислительных ресурсов, чем при обучении модели с нуля. В частности, для LLM fine-tuning крайне важен, так как повторное обучение на всём объёме данных вычислительно слишком затратно. Сравнение предварительного обучения LLM и fine-tuning Успех fine-tuning привёл ко множеству передовых результатов в широком спектре задач NLP и сделал его стандартной практикой в разработке высокоточных языковых моделей. Исследователи и практики продолжают исследовать варианты и оптимизации методик fine-tuning, чтобы ещё больше расширить возможности NLP. В этой статье мы глубже изучим процесс fine-tuning LLM на основе инструкций при помощи библиотеки transformers двумя разными способами: просто с библиотекой transformers и с модулем trl .

https://habr.com/ru/articles/829324/

#Машинное_обучение #LLM #Finetuning #SFT #Supervised_finetuning #NLP #Large_Language_Model #датасет #размета_данных #dataset #данные #data #разметка

Как с помощью supervised fine-tuning кастомизировать LLM

В быстро развивающейся сфере Natural Language Processing (NLP) fine-tuning стал мощным и эффективным инструментом адаптации предварительно обученных больших языковых моделей (Large Language Model,...

Хабр

[Перевод] Supervised Fine-Tuning: как настроить LLM под конкретную задачу?

Пожалуй, для адаптации больших языковых моделей (large language model, LLM) под чётко очерченные задачи обработки естественного языка (natural language processing, NLP) нет технологии лучше, чем SFT (supervised fine-tuning). Для дообучения модели её необходимо предварительно обучить, а это означает, что она уже многому научилась из широкого спектра текстов. Но можно ли после одного лишь предварительного обучения использовать модель в различных типах задач? Да, но ей всё равно будет не хватать совершенствования при помощи SFT, чтобы она действительно могла выполнять требуемые действия и стала опытной в определённой сфере знаний.

https://habr.com/ru/articles/829936/

#Машинное_обучение #supervised_finetuning #SFT #LLM #NLP #RAG #Instruction_finetuning #датасет #размета_данных #dataset #данные #data #разметка

Supervised Fine-Tuning: как настроить LLM под конкретную задачу?

Пожалуй, для адаптации больших языковых моделей (large language model, LLM) под чётко очерченные задачи обработки естественного языка (natural language processing, NLP) нет технологии лучше, чем SFT...

Хабр

Разметка данных — тренируемся на кошках

Погружаясь все глубже в процессы автоматизации в какой то момент ты сталкиваешься с необходимостью разметки данных, хотя буквально пару недель назад, словосочетания - разметка данных и ты, стояли на вечеренике под названием "Заработок в интернетах" в разных комнатах, вернее ты стоял около бассейна, а разметка данных была на третьем этаже, курила на балконе со специалистами в области машинного обучения. Как мы встретились? Вероятно кто-то столкнул ее с балкона в бассейн, а я помог ей выбраться, попутно замочив и свою одежду. И вот, вы сидите на кухне, курите одну сигарету на двоих и пытаетесь разобраться, чем каждый из вас занимается, и как вы можете быть друг другу полезными? В общем не так важно, для чего мне это понадобилось, но тот факт, что у меня это получилось намного интереснее. И теперь, когда вам уже достаточно душно (или нет), переходим к сути.

https://habr.com/ru/articles/829710/

#разметка #разметка_данных #датасет #разметка_датасета #разметка_изображений #разметка_фотографий

Разметка данных — тренируемся на кошках

Погружаясь все глубже в процессы автоматизации в какой то момент ты сталкиваешься с необходимостью разметки данных, хотя буквально пару недель назад, словосочетания - разметка данных и ты, стояли на...

Хабр

GigaChat + RAG: как гига нам инструкции для разметки пишет в 3 раза быстрее

Почти за всем хорошим ML стоят хорошие данные. И так получилось, что таких данных часто нет и их приходится добывать, а даже добыв, из них нужно сделать что-то подходящее, и (если сильно огрубить) такой процесс называется разметкой. Разметка — такая штука, когда все в индустрии делают примерно одно и то же, но чуть-чуть или сильно по разному. Разметка — очень нудная штука сама по себе, и потому ее запуском, отладкой и настройкой инженеры заниматься вот совсем не любят. Сам процесс довольно монотонен, но когда у тебя мультимодальный конвейер из поступающих данных, то делать всяческие инструменты для разметки и предлагать инженерам решения без их участия — это весело! Одна из наших важнейших метрик, помимо качества результата, это позаимствованный у бизнеса термин ttm (time to market), что в нашем случае — время от момента прихода клиента с идеей по момент продуманного запуска его задачи в разметку. В этой статье — пошагово о том, как мы не только ускорили написание инструкций, но и даже попутно повысили их качество. Идея — гениально проста, рецепт — повторяем, эффект — огонь. Расчехляйте вашу LLM, закатайте рукава, тут есть много работки!

https://habr.com/ru/articles/825606/

#разметка #разметка_данных #разметка_датасета #большие_данные #llm #обработка_данных #искусственный_интеллект #rag #ai #ии

GigaChat + RAG: как гига нам инструкции для разметки пишет в 3 раза быстрее

Почти за всем хорошим ML стоят хорошие данные. И так получилось, что таких данных часто нет и их приходится добывать, а даже добыв, из них нужно сделать что-то подходящее, и (если сильно огрубить)...

Хабр