Вербальные вычисления (VC) в доказательных DSS и NLP
С.Б. Пшеничников В статье изложен новый математический аппарат вербальных вычислений в NLP (обработке естественного языка). Слова погружаются не в действительное векторное пространство, а в алгебру предельно разреженных матричных единиц. Вычисления становятся доказательными и прозрачными. На примере показаны развилки в вычислениях, которые остаются незамеченными при использовании традиционных подходов, а результат при этом может быть неожиданным. Использование IT в обработке естественного языка (Natural Language Processing, NLP) требует стандартизации текстов, например, токенизации или лемматизации. После этого можно пробовать применять математику, поскольку она является высшей формой стандартизации и превращает исследуемые объекты в идеальные, например, таблицы данных в матрицы элементов. Только на языке матриц можно искать общие закономерности данных (чисел и текстов). Если текст превращается в числа, то в NLP это сначала натуральные числа для нумерации слов, которые затем погружаются в действительное векторное пространство. Возможно, следует не торопиться это делать, а придумать новый вид чисел более пригодный для NLP, чем числа для исследования физических явлений. Такими являются матричные гипербинарные числа. Гипербинарные числа - один из видов гиперкомплексных чисел. Для гипербинарных чисел существует своя арифметика и если к ней привыкнуть, то она покажется привычнее и проще пифагорейской арифметики. В системах поддержки принятия решений (DSS) текстами являются оценочные суждения и пронумерованная шкала вербальных оценок. Далее (как и в NLP) номера превращаются в векторы действительных чисел и используются как наборы коэффициентов средних арифметических взвешенных.
https://habr.com/ru/articles/810897/
#вербальное #вычисления #текст #матрицы #алгебра #среднее_значение