https://www.docker.com/blog/mcp-servers-docker-toolkit-cagent-gateway/ - Comparing #Docker #MCP Server, #cagent, and #LangGraph. #Docker is definitely the easy button here. Nice article noting the nuances and benefits https://www.linkedin.com/in/mikegcoleman/.
Using MCP Servers with Docker: Tools to Multi-Agent | Docker

Run MCP servers without runtime pain. Use Docker’s MCP Toolkit, Catalog, Gateway, and cagent to scale from single tools to multi-agent systems.

Docker

Diapers 1 - AI Hallucinations 0 🍼

After a 1-hour night session and a quick diaper change, I finally fixed my #LangGraph agent.

The fix was simple but effective:
- Each tool now returns a JOB ID instead of.. nothing.
- The AI checks the status and waits instead of panic-looping.
- Switched outputs from JSON to Markdown. I knew I should've done it sooner, but I was too lazy 😭

Result: No more hallucinations. The agent is actually behaving like a pro now. 👀

#IndieHacker #AIAgent #DadLife

You're building AI agents with #langgraph ? Maybe you can help me.

I have a problem with my AI Agent: when a tool takes time to return a result, e.g., +1min, it starts hallucinating and filling the void by talking to the user and relaunching the tool multiple times.

The worst is that the tool runs in batch mode, so when it receives a response for one out of ten, it thinks the other 9 have failed.

How can I inform the AI about the progress state of a tool without wasting tokens ?

#aiagents

Remote is scaling AI onboarding for thousands of users with LangChain & LangGraph, but warns about token bloat as contexts grow. A look at how open‑source tooling can accelerate adoption while highlighting the hidden costs of prompt length. Curious how they’re handling it? Read the full story. #LangChain #LangGraph #OpenSourceAI #TokenBloat

🔗 https://aidailypost.com/news/remote-uses-langchain-langgraph-aionboard-thousands-notes-token-bloat

✅ Đã xây dựng hệ thống đa‑đại lý mô phỏng chuỗi cung ứng bằng LangGraph, sử dụng SQLite + SQLAlchemy làm nguồn dữ liệu duy nhất. Các đại lý LLM: nhu cầu, tồn kho, rủi ro, mua sắm, logistics; một coordinator tổng hợp quyết định và gate quyết định tự động hay cần duyệt. Mục tiêu: tối giản, dễ hiểu, không phải sản xuất. Mong nhận phản hồi về vai trò đại lý, điểm yếu khi mở rộng, cách triển khai và tính năng cần thêm.

#AI #LLM #LangGraph #SupplyChain #CôngNghệ #ChuỗiCungỨng #Python #OpenSource

h

That having been said, debugging #LangGraph agents is still hard lol

Build more effective multi-agent systems by mastering agent handoffs. Kenneth Leung teaches you 2 distinct methods in #LangGraph for routing tasks.

https://towardsdatascience.com/how-agent-handoffs-work-in-multi-agent-systems/

How Agent Handoffs Work in Multi-Agent Systems | Towards Data Science

Understanding how LLM agents transfer control to each other in a multi-agent system with LangGraph

Towards Data Science

AI 에이전트의 3가지 장기 메모리: 경험·지식·스킬을 저장하는 기술

자율 AI 에이전트가 진정한 자율성을 갖추려면 3가지 장기 메모리가 필요합니다. 에피소드·의미론·절차 메모리의 역할과 구현 방법을 기술적으로 설명합니다.

https://aisparkup.com/posts/7854

Финансовый AI-агент на Python: MCP и CodeAct

Продолжаем строить финансового AI-ассистента на базе MCP-сервера Finam. Сначала создадим классического MCP-агента на LangChain, затем эволюционируем его в CodeAct-архитектуру, где AI пишет Python-код вместо прямых вызовов функций. В итоге получим агента, способного анализировать тысячи акций, строить графики и не переполнять контекстное окно.

https://habr.com/ru/articles/980542/

#ai #mcp #aiagent #python #llm #codeact #langchain #langgraph #mcptools #llmприложения

Финансовый AI-агент на Python: MCP и CodeAct

Это продолжение статьи , в которой мы создавали MCP-сервер на примере Финам. В этой части я покажу, как построить полноценного финансового ИИ-ассистента на Python. Научимся реализовывать MCP-клиента,...

Хабр
AI Skills 2025: LangChain, RAG & MLOps—The Complete Guide

Comprehensive guide to the three critical AI competencies reshaping hiring in 2025: LangChain for orchestration, RAG for knowledge grounding, and MLOps for production deployment.

TechLife