Генетический алгоритм в помощь Adam — супер, но есть нюанс

Хабр привет! Это моя первая статья и я хотел бы начать ее с такого интересного эксперимента как "сбор гибрида для обучения нейронных сетей с помощью генетического алгоритма" и дополнительно рассказать про библиотеку Deap. Давайте определим из чего у нас будет состоять наш гибрид (как можно понять из названия) - это: 1) Обычный проход градиентного спуска ...

https://habr.com/ru/articles/909124/

#искусственный_интеллект #алгоритмы #генетические_алгоритмы #обучение_нейронных_сетей #нейронные_сети #нейронные_сети_и_машинное_обучение #машинное_обучение #mnist

Генетический алгоритм в помощь Adam — супер, но есть нюанс

Хабр, привет! Это моя первая статья и я хотел бы начать ее с такого интересного эксперимента как "сбор гибрида для обучения нейронных сетей с помощью генетического алгоритма" и дополнительно...

Хабр

NoProp: Реальный опыт обучения без Backprop – от провала к 99% на MNIST

Всем привет! Обучение нейронных сетей с помощью обратного распространения ошибки (backpropagation) — это стандарт де‑факто. Но у него есть ограничения: память, последовательные вычисления, биологическая неправдоподобность. Недавно я наткнулся на интересную статью « NOPROP: TRAINING NEURAL NETWORKS WITHOUT BACK‑PROPAGATION OR FORWARD‑PROPAGATION » (Li, Teh, Pascanu, arXiv:2403.13 502), которая обещает обучение вообще без сквозного backprop и даже без полного прямого прохода во время обучения ! Идея показалась захватывающей, и мы (я и ИИ‑ассистент Gemini) решили попробовать ее реализовать на PyTorch для MNIST. В этой статье я хочу поделиться нашим путешествием: как мы пытались следовать описанию из статьи, с какими трудностями столкнулись, как анализ связанных работ помог найти решение (которое, правда, отличается от оригинала) и каких впечатляющих результатов удалось достичь в итоге. Спойлер: получилось интересно, совсем не так, как ожидалось, но результат превзошел ожидания от процесса отладки. Дисклеймер 1: Это рассказ об учебном эксперименте. Результаты и выводы основаны на нашем опыте и могут не полностью отражать возможности оригинального метода при наличии всех деталей реализации.)

https://habr.com/ru/articles/900186/

#нейронные_сети #нейронные_сети_и_машинное_обучение #машинное_обучение #deep_learning #noprop #DDPM #backpropagation #research #искусственный_интеллект

NoProp: Реальный опыт обучения без Backprop – от провала к 99% на MNIST

Всем привет! Обучение нейронных сетей с помощью обратного распространения ошибки (backpropagation) — это стандарт де‑факто. Но у него есть ограничения: память, последовательные...

Хабр

Метрики оценки моделей нейронных сетей для чайников

Оценка моделей нейронных сетей играет ключевую роль в выборе наилучшего алгоритма для конкретной задачи. Выбор метрики должен соответствовать целям, поскольку очевидного показателя «Точность» (accuracy) обычно недостаточно. Критерии помогают определить эффективность и корректно сравнить различные подходы. Меня зовут Александр Агеев, я ML‑разработчик в SL Soft AI. В этой статье я расскажу про методы оценки трех задач: классификации, обнаружения объектов (детекции), сегментации. Внимание: материал предназначен для первого погружения в тему и не учитывает многовариативность подходов в узкоспециализированных задачах, где метрики могут изменяться и усложняться.

https://habr.com/ru/companies/slsoft/articles/893694/

#нейронные_сети #нейронные_сети_и_машинное_обучение

Метрики оценки моделей нейронных сетей для чайников

Оценка моделей нейронных сетей играет ключевую роль в выборе наилучшего алгоритма для конкретной задачи. Выбор метрики должен соответствовать целям, поскольку очевидного показателя...

Хабр

Типы и архитектуры параллельных вычислений: какие они бывают?

Привет, Хабр! В этом материале мы снова вернемся к теме GPU и машинного обучения, но на этот раз поговорим о параллельных вычислениях, видах параллелизма и типах архитектур, которые задействуют для эффективной тренировки и работы нейросетевых моделей.

https://habr.com/ru/articles/881488/

#параллельные_вычисления #gpu #gpu_вычисления #параллелизм #архитектура #глубокое_обучение #глубокие_нейронные_сети #нейронные_сети #нейронные_сети_и_машинное_обучение #cpu

Типы и архитектуры параллельных вычислений: какие они бывают?

Привет, Хабр! В этом материале мы снова вернемся к теме GPU и машинного обучения, но на этот раз поговорим о параллельных вычислениях, видах параллелизма и типах архитектур, которые задействуют для...

Хабр

Как стать разработчиком ML и нейронок

Всем привет. Сегодняшняя статья будет интересна тем, кто хочет стать ML‑разработчиком. Последние три года я собирал материалы на эту тему (естественно, проверяя все на себе). Это не просто сухая выжимка из книг, курсов и статей, а личный опыт, основанный на задачах, которые я решаю ежедневно. Меня зовут Агеев Александр, сейчас я ML‑разработчик в команде SOICA. Из других интересных проектов в прошлом — робототехника (детекция и сегментация продуктов питания), исследования мозговой активности ЭЭГ, автоматизации сети хлебозаводов Москвы, разработка алгоритмов в приложении для подсчета ударов мяча и распознавания скелета человека, исследование и применение больших LLM‑моделей, расшифровка аудио и транскрибация текста, а также EyeTracking (подсчет числа открытия и закрытия глаз).

https://habr.com/ru/companies/slsoft/articles/832176/

#машинное_обучение* #машинное_обучение_нейросети #машинное_обучение_нейросети_python #дорожная_карта #нейронные_сети_и_машинное_обучение

Как стать разработчиком ML и нейронок

Всем привет. Сегодняшняя статья будет интересна тем, кто хочет стать ML‑разработчиком. Последние три года я собирал материалы на эту тему (естественно, проверяя все на себе). Это...

Хабр