Эконометрика в ритейле: как не потратить миллионы на заведомо неэффективные эксперименты

Всем привет! На связи команда ad-hoc аналитики X5 Tech. Если вы уже знакомы с нашими статьями, то наверняка знаете, что нашей ключевой темой является А/Б тестирование. Важной составляющей А/Б теста является дизайн: для успешного проведения эксперимента необходимо оценить размер пилотной и контрольной групп, зафиксировав предварительно ожидаемый эффект. Но возникает вопрос: как убедиться в обоснованности гипотезы и рассчитать ожидаемые эффекты от инициативы? В статье мы рассмотрим ключевые понятия из эконометрики, такие как коинтеграция и модель коррекции ошибок, и продемонстрируем их применение на ретроспективных данных. Мы подробно разберём, как использовать эти инструменты для анализа взаимосвязей между временными рядами. В качестве практического примера с помощью функции импульсного отклика мы проведём количественную оценку ожидаемого влияния повышения комплектности персонала на списания на выбранном кейсе.

https://habr.com/ru/companies/X5Tech/articles/874190/

#анализ_данных #data_science #аналитика #статистика #эконометрика #эконометрика_в_ритейле #временные_ряды #time_series #абтесты #коинтеграция

Эконометрика в ритейле: как не потратить миллионы на заведомо неэффективные эксперименты

Всем привет! На связи команда ad-hoc аналитики X5 Tech. Если вы уже знакомы с нашими статьями, то наверняка знаете, что нашей ключевой темой является А/Б тестирование. Важной составляющей А/Б теста...

Хабр

Diff-in-diff: жизнь за пределами идеального эксперимента

Привет, Хабр! На связи команда ad-hoc аналитики X5 Tech. Основная задача аналитика при проведении А/Б тестирования - оценка эффекта воздействия (тритмента). В этой статье мы обсудим, что такое идеальный эксперимент и почему он позволяет корректно оценить эффект от воздействия. Затем расскажем, когда идеальный эксперимент невозможен и дадим интуитивное обоснование того, как метод difference-in-difference помогает справиться с оценкой эффекта воздействия в таких ситуациях. В конце мы обсудим формальные предпосылки метода и покажем на примере симуляций последствия их невыполнения.

https://habr.com/ru/companies/X5Tech/articles/867734/

#статистика #эконометрика #causal_inference #differenceindifference #diffindiff #абтесты #эксперимент #линейная_регрессия #абтестирование #treatment

Diff-in-diff: жизнь за пределами идеального эксперимента

Привет, Хабр! На связи команда ad-hoc аналитики X5 Tech. Основная задача аналитика при проведении А/Б тестирования - оценка эффекта воздействия (тритмента). Примеров задач по оценке эффекта...

Хабр

Causal Inference: прозрение и практика. Лекция 2. Рандомизированные контролируемые испытания

Предыдущая лекция . Рандомизированные контролируемые испытания (РКИ) представляют собой наиболее объективную, прозрачную и эффективную методологию для проведения экспериментов. Они пользуются огромной популярностью и применяются в самых разных сферах, включая науку, медицину, маркетинг и технологии. С их помощью учёные и специалисты могут проверять эффективность новых методов лечения, лекарственных препаратов, продуктов или услуг, сравнивая результаты между двумя или более группами. РКИ встречаются гораздо чаще, чем может показаться на первый взгляд. Это невероятно популярный метод исследования причинно‑следственных связей. Хотя они довольно просты в реализации, их точность значительно превосходит все другие методы аппроксимации .

https://habr.com/ru/companies/sberbank/articles/847406/

#Causal_Inference #эконометрика #причинноследственный_вывод

Causal Inference: прозрение и практика. Лекция 2. Рандомизированные контролируемые испытания

Предыдущая лекция . Рандомизированные контролируемые испытания (РКИ) представляют собой наиболее объективную, прозрачную и эффективную методологию для проведения экспериментов. Они пользуются...

Хабр

Causal Inference: прозрение и практика. Лекция 1. Основные понятия Causal Inference

В нашем веке центральное место в анализе и использовании данных занимает Data Science. Однако часто данное понятие сводят к одним лишь алгоритмам машинного обучения или даже искусственному интеллекту, преуменьшая другие важные аспекты этой области знаний. История формирования современной пауки о данных началась со сближения Двух могущественных инструментов — эконометрики и машинного обучения. В разные времена они казались двумя противоположностями в анализе данных. Машинное обучение было ориентировано на высокую точность прогнозов, порой жертвуя понятностью моделей. Эконометрика же делала акцент на интерпретируемости, понимании причинно‑следственных связей, иногда оставаясь в тени из‑за ограниченности моделей. Однако со временем стало ясно, что для полного понимания данных необходимо научиться объединять эти два подхода. Здесь на сцену выходит причинно‑следственный вывод (Causal Inference). Эта область Data Science помогает раскрыть причины явлений, объединяя преимущества как машинного обучения, так и эконометрики. Judea Pearl в своей статье 2021 года подчеркивает важность причинно‑следственного вывода как «ключевого элемента для достижения баланса между радикальным эмпиризмом ML и интерпретационным подходом эконометрики». Таким образом, Causal Inference — это область статистики и научных исследований, направленная на выявление и измерение причинно‑следственных связей между переменными. Она помогает определить, какое воздействие оказывает изменение одной переменной на другую, отличая это воздействие от простых корреляций.

https://habr.com/ru/companies/sberbank/articles/847382/

#Causal_Inference #эконометрика #причинноследственный_вывод

Causal Inference: прозрение и практика. Лекция 1. Основные понятия Causal Inference

В нашем веке центральное место в анализе и использовании данных занимает Data Science. Однако часто данное понятие сводят к одним лишь алгоритмам машинного обучения или даже...

Хабр