Apple przyspiesza działanie modeli AI nawet 5 razy

Apple opublikowało badania opisujące nową technikę, która pozwala modelom językowym (LLM) generować odpowiedzi nawet pięć razy szybciej, bez utraty jakości.

Tradycyjnie modele LLM tworzą tekst token po tokenie (autoregresja), co spowalnia proces. Apple odkryło, że modele – mimo trenowania na przewidywanie jednego tokena – mają wiedzę o kilku kolejnych. Na tej podstawie powstał framework Multi-Token Prediction (MTP), w którym model przewiduje naraz kilka tokenów.

Badacze wprowadzili specjalne tokeny maskujące w treści promptów (np. „Kot jest ”), które model wypełnia w jednym kroku („bardzo puszysty”). Jeśli przewidywanie nie jest zgodne z klasycznym trybem, system wraca do standardowej metody. Dzięki temu zachowana jest wysoka dokładność.

Testy z modelem open-source Tulu3-8B pokazały:

  • 2–3 razy szybsze działanie w typowych zadaniach (Q&A, czat)
  • do 5 razy szybsze w przewidywalnych domenach, takich jak programowanie i matematyka
  • brak utraty jakości dzięki technice gated LoRA adaptation

Pełny artykuł naukowy dostępny jest na stronach arXiv.

#aiApple #Apple #AppleIntelligence #badaniaApple #gatedLoRAAdaptation #generowanieTekstu #LLM #modeleJęzykowe #MTP #MultiTokenPrediction #optymalizacjaAI #przyspieszenieAI #sztucznaInteligencja #szybkieAI #Tulu38B

Explore the sophisticated mechanisms driving multi-token prediction. This section rigorously explains its edge via information-theoretic mutual information https://hackernoon.com/decoding-the-magic-multi-token-predictions-information-theoretic-edge-and-beyond #multitokenprediction
Decoding the Magic: Multi-Token Prediction's Information-Theoretic Edge & Beyond | HackerNoon

Explore the sophisticated mechanisms driving multi-token prediction. This section rigorously explains its edge via information-theoretic mutual information

Discover how multi-token prediction improves LLM algorithmic reasoning, potentially by learning to allocate computational resources more efficiently https://hackernoon.com/multi-token-prediction-mastering-algorithmic-reasoning-with-enhanced-resource-use #multitokenprediction
Multi-Token Prediction: Mastering Algorithmic Reasoning with Enhanced Resource Use | HackerNoon

Discover how multi-token prediction improves LLM algorithmic reasoning, potentially by learning to allocate computational resources more efficiently

This figure illustrates the profound impact of training scale on multi-token prediction models' performance on GSM8K, highlighting critical data efficiency https://hackernoon.com/strategic-llm-training-multi-token-predictions-data-efficiency-in-mathematical-reasoning #multitokenprediction
Strategic LLM Training: Multi-Token Prediction's Data Efficiency in Mathematical Reasoning | HackerNoon

This figure illustrates the profound impact of training scale on multi-token prediction models' performance on GSM8K, highlighting critical data efficiency

Explore Table S5 revealing multi-token prediction's remarkable training efficiency across LLM sizes (0.3B-13B) https://hackernoon.com/unleashing-llm-training-efficiency-multi-token-predictions-near-zero-overhead #multitokenprediction
Unleashing LLM Training Efficiency: Multi-Token Prediction's Near-Zero Overhead | HackerNoon

Explore Table S5 revealing multi-token prediction's remarkable training efficiency across LLM sizes (0.3B-13B)

We conclude our work on multi-token prediction as a superior method for training LLMs, delivering enhanced performance for generative/reasoning tasks https://hackernoon.com/unlocking-generative-power-multi-token-prediction-for-next-gen-llms #multitokenprediction
Unlocking Generative Power: Multi-Token Prediction for Next-Gen LLMs | HackerNoon

We conclude our work on multi-token prediction as a superior method for training LLMs, delivering enhanced performance for generative/reasoning tasks

Explore the landscape of language modeling losses, multi-token prediction, and self-speculative decoding. highlights. https://hackernoon.com/defining-the-frontier-multi-token-predictions-place-in-llm-evolution #multitokenprediction
Defining the Frontier: Multi-Token Prediction's Place in LLM Evolution | HackerNoon

Explore the landscape of language modeling losses, multi-token prediction, and self-speculative decoding. highlights.

Dive into the design space beyond our core multi-token prediction architecture, comparing approaches like replicated unembeddings and linear heads https://hackernoon.com/exploring-alternative-architectures-for-multi-token-llm-prediction #multitokenprediction
Exploring Alternative Architectures for Multi-Token LLM Prediction | HackerNoon

Dive into the design space beyond our core multi-token prediction architecture, comparing approaches like replicated unembeddings and linear heads

Dive into the core reasons behind multi-token prediction's superior LLM performance, exploring how it mitigates distributional discrepancy https://hackernoon.com/unraveling-multi-token-prediction-bridging-training-inference-gaps-with-lookahead #multitokenprediction
Unraveling Multi-Token Prediction: Bridging Training-Inference Gaps with Lookahead | HackerNoon

Dive into the core reasons behind multi-token prediction's superior LLM performance, exploring how it mitigates distributional discrepancy

Explore how multi-token prediction fundamentally alters LLM capabilities, dramatically improving induction and algorithmic reasoning https://hackernoon.com/unveiling-llm-intelligence-multi-token-prediction-drives-qualitative-reasoning-shifts #multitokenprediction
Unveiling LLM Intelligence: Multi-Token Prediction Drives Qualitative Reasoning Shifts | HackerNoon

Explore how multi-token prediction fundamentally alters LLM capabilities, dramatically improving induction and algorithmic reasoning