[Перевод] От симметрии к хаосу поцелуев: как математики нашли новые подходы к задаче Ньютона по упаковке сфер
В 1694 году в Кембриджском университете Исаак Ньютон и астроном Дэвид Грегори завели разговор о природе звёзд. В ходе беседы они наткнулись на математическую загадку, которая оставалась нерешённой на протяжении веков. Детали их обсуждения сохранились плохо и, возможно, частично вымышлены, но суть сводилась к тому, как звёзды разного размера вращаются вокруг центрального светила. Этот разговор вдохновил на более общий вопрос: е сли есть центральная сфера, сколько одинаковых сфер можно разместить вокруг неё так, чтобы они касались её, но не пересекались друг с другом? В трёхмерном пространстве легко расположить 12 сфер вокруг центральной , каждая из которых будет касаться её в одной точке. Однако при таком расположении между сферами остаются зазоры. Возникает вопрос: можно ли добавить 13-ю сферу, чтобы она тоже касалась центральной? Грегори считал, что это возможно, а Ньютон был уверен, что нет. Эта задача, известная как проблема «поцелуев» (отсылка к касанию шаров, как в бильярде), оказалась важной для многих областей, включая изучение атомных структур и создание кодов с исправлением ошибок. Однако её решение было крайне сложным. Лишь в 1952 году математики смогли доказать, что Ньютон был прав: в трёхмерном пространстве максимальное число сфер, которые могут касаться центральной, равно 12.
https://habr.com/ru/articles/885914/
#математика #сферы #кодирование #симметрия #хаос