Das schöne an Social-Media-Plattformen ist ja die Meinungsvielfalt.
Hier zum Beispiel teilen mir die einen mit, dass das Gute an dieser Plattform ist, dass sie so viele Möglichkeiten bietet und ich, wenn ich will, alles ändern kann.
Und die anderen sind ziemlich empört, wenn ich schreibe, was mir nicht gefällt, weil alles bleiben soll wie es ist und die Neuen nicht so viel Lärm machen sollen. (Auch wenn ich gar nichts ändern will.)
Spiegelt die Gesellschaft wunderbar wieder.
Agents trained with DQN rely on an observation at each timestep to decide what action to take next. However, in real world applications observations can change or be missing entirely. Examples of this could be a light bulb breaking down, or the wallpaper in a certain room changing. While these situations change the actual observation, the underlying optimal policy does not change. Because of this we want our agent to continue taking actions until it receives a (recognized) observation again. To achieve this we introduce a combination of a neural network architecture that uses hidden representations of the observations and a novel n-step loss function. Our implementation is able to withstand location based blindness stretches longer than the ones it was trained on, and therefore shows robustness to temporary blindness. For access to our implementation, please email Nathan, Marije, or Pau.
A central challenge of the clean energy transition is the development of catalysts for low-emissions technologies. Recent advances in Machine Learning for quantum chemistry drastically accelerate the computation of catalytic activity descriptors such as adsorption energies. Here we introduce AdsorbRL, a Deep Reinforcement Learning agent aiming to identify potential catalysts given a multi-objective binding energy target, trained using offline learning on the Open Catalyst 2020 and Materials Project data sets. We experiment with Deep Q-Network agents to traverse the space of all ~160,000 possible unary, binary and ternary compounds of 55 chemical elements, with very sparse rewards based on adsorption energy known for only between 2,000 and 3,000 catalysts per adsorbate. To constrain the actions space, we introduce Random Edge Traversal and train a single-objective DQN agent on the known states subgraph, which we find strengthens target binding energy by an average of 4.1 eV. We extend this approach to multi-objective, goal-conditioned learning, and train a DQN agent to identify materials with the highest (respectively lowest) adsorption energies for multiple simultaneous target adsorbates. We experiment with Objective Sub-Sampling, a novel training scheme aimed at encouraging exploration in the multi-objective setup, and demonstrate simultaneous adsorption energy improvement across all target adsorbates, by an average of 0.8 eV. Overall, our results suggest strong potential for Deep Reinforcement Learning applied to the inverse catalysts design problem.
I have trained a GPT with the newest literature about DQN in order to find out what agitated the openAI board so much.
It seems to be a good idea to let a DQN choose the actual token from the output softmax distribution, use the loss function as reward and let the DQN learn strategies.
Schon absurd, wenn Hitlergrüsse und Flugblätter gegen Juden dich weiter als Wirtschaftsminister im Amt halten, aber gegen die Person, die das öffentlich macht ermittelt wird.
Nie wieder ist jetzt wird dadurch lächerlich.