"Predictive AI systems have also been shown to be incredibly useful when they leverage certain generative techniques within a constrained set of options. Systems of this type are diverse, spanning everything from outfit visualization to cross-language translation. Soon, predictive-generative hybrid systems will make it possible to clone your own voice speaking another language in real time, an extraordinary aid for travel (with serious impersonation risks). There’s considerable room for growth here, but generative AI delivers real value when anchored by strong predictive methods.
To understand the difference between these two broad classes of AI, imagine yourself as an AI system tasked with showing someone what a cat looks like. You could adopt a generative approach, cutting and pasting small fragments from various cat images (potentially from sources that object) to construct a seemingly perfect depiction. The ability of modern generative AI to produce such a flawless collage is what makes it so astonishing.
Alternatively, you could take the predictive approach: Simply locate and point to an existing picture of a cat. That method is much less glamorous but more energy-efficient and more likely to be accurate, and it properly acknowledges the original source. Generative AI is designed to create things that look real; predictive AI identifies what is real. A misunderstanding that generative systems are retrieving things when they are actually creating them has led to grave consequences when text is involved, requiring the withdrawal of legal rulings and the retraction of scientific articles."

