https://arxiv.org/abs/2510.01604 #Physics.App-Ph #Cytoskeleton #Mechanical #Mechanics #Cell

Tensegrity structures and data-driven analysis for 3d cell mechanics
The cytoskeleton (CSK) plays an important role in many cell functions. Given the similarities between the mechanical behavior of tensegrity structures and the CSK, many studies have proposed different tensegrity-based models for simulating cell mechanics. However, the low symmetry of most tensegrity units has hindered the analysis of realistic 3D structures. As a result, tensegrity-based modeling in cell mechanics has been mainly focused on single cells or monolayers. In this paper, we propose a 3D tensegrity model based on the finite element method for simulating 3D cell mechanics. We show that the proposed model not only captures the nonlinearity of a single cell in an indentation test and a monolayer in stretch test but also the non-uniform stress distribution in multicellular spheroids upon non-uniform prestress design. Furthermore, we introduce a multiscale data-driven framework for cellular mechanics to optimize the computation, thus paving the way for modeling the mechanobiology of large cellular assemblies such as organs.