#statstab #410 Ordered Regression Models: a Tutorial
Thoughts: A very comprehensive paper on analysing ordinal data.
#orderedregression #regression #ordinal #tutorial #likert #probit #logit
https://link.springer.com/article/10.1007/s11121-021-01302-y

Ordered Regression Models: a Tutorial - Prevention Science
Ordinal outcomes are common in the social, behavioral, and health sciences, but there is no commonly accepted approach to analyzing them. Researchers make a number of different seemingly arbitrary recoding decisions implying different levels of measurement and theoretical assumptions. As a result, a wide array of models are used to analyze ordinal outcomes, including the linear regression model, binary response model, ordered models, and count models. In this tutorial, we present a diverse set of ordered models (most of which are under-utilized in applied research) and argue that researchers should approach the analysis of ordinal outcomes in a more systematic fashion by taking into consideration both theoretical and empirical concerns, and prioritizing ordered models given the flexibility they provide. Additionally, we consider the challenges that ordinal independent variables pose for analysts that often go unnoticed in the literature and offer simple ways to decide how to include ordinal independent variables in ordered regression models in ways that are easier to justify on conceptual and empirical grounds. We illustrate several ordered regression models with an empirical example, general self-rated health, and conclude with recommendations for building a sounder approach to ordinal data analysis.