📄 pyclustering 0.8.1
Quicklook:
Novikov, Andrei et al. (2018) · Zenodo
Reads: 0 · Citations: 1
DOI: 10.5281/zenodo.1254845
🔗 https://ui.adsabs.harvard.edu/abs/2018zndo...1254845N/abstract
#Astronomy #Astrophysics #AstroAI #ClusteringDataminingClusteranalysisAiMachinelearningOscillatoryn…
pyclustering 0.8.1
pyclustering 0.8.1 library is collection of clustering algorithms, oscillatory networks, neural networks, etc. GENERAL CHANGES: Implemented feature to use specific metric for distance calculation in K-Means algorithm (pyclustering.cluster.kmeans, ccore.clst.kmeans). See: https://github.com/annoviko/pyclustering/issues/434 Implemented BANG-clustering algorithm with result visualizer (pyclustering.cluster.bang). See: https://github.com/annoviko/pyclustering/issues/424 Implemented feature to use specific metric for distance calculation in K-Medians algorithm (pyclustering.cluster.kmedians, ccore.clst.kmedians). See: https://github.com/annoviko/pyclustering/issues/429 Supported new type of input data for K-Medoids - distance matrix (pyclustering.cluster.kmedoids, ccore.clst.kmedoids). See: https://github.com/annoviko/pyclustering/issues/418 Implemented TTSAS algorithm (pyclustering.cluster.ttsas, ccore.clst.ttsas). See: https://github.com/annoviko/pyclustering/issues/398 Implemented MBSAS algorithm (pyclustering.cluster.mbsas, ccore.clst.mbsas). See: https://github.com/annoviko/pyclustering/issues/398 Implemented BSAS algorithm (pyclustering.cluster.bsas, ccore.clst.bsas). See: https://github.com/annoviko/pyclustering/issues/398 Implemented feature to use specific metric for distance calculation in K-Medoids algorithm (pyclustering.cluster.kmedoids, ccore.clst.kmedoids). See: https://github.com/annoviko/pyclustering/issues/417 Implemented distance metric collection (pyclustering.utils.metric, ccore.utils.metric). See: no reference. Supported new type of input data for OPTICS - distance matrix (pyclustering.cluster.optics, ccore.clst.optics). See: https://github.com/annoviko/pyclustering/issues/412 Supported new type of input data for DBSCAN - distance matrix (pyclustering.cluster.dbscan, ccore.clst.dbscan). See: no reference. Implemented K-Means observer and visualizer to visualize and animate clustering results (pyclustering.cluster.kmeans, ccore.clst.kmeans). See: no reference. CORRECTED MAJOR BUGS: Bug with out of range in K-Medians (pyclustering.cluster.kmedians, ccore.clst.kmedians). See: https://github.com/annoviko/pyclustering/issues/428 Bug with fast linking in PCNN (python implementation only) that wasn't used despite the corresponding option (pyclustering.nnet.pcnn). See: https://github.com/annoviko/pyclustering/issues/419
