Нужно ли обучать YOLO с нуля? Практические выводы
Для меня машинное обучение - это прежде всего экспериментальная наука. Выигрывает не тот, кто придумал самую сложную архитектуру, а тот, кто быстрее проходит итерации (анализирует кривые потерь, меняет гипотезы и снова запускает обучение). И именно в этой постоянной гонке я всё чаще задаю себе один и тот же вопрос, а нужно ли вообще обучать модель с нуля? Когда я говорю «обучать с нуля», я имею в виду именно пустые веса. Не fine-tuning и не до обучение, а старт с нулевой инициализацией (PyTorch-модель без пред обученных параметров или YOLO с отключёнными pretrained-весами). Каждый раз перед началом обучения я задаю себе два простых вопроса: зачем я собираюсь тренировать модель и какая архитектура мне действительно нужна? Если ответы на эти вопросы расплывчатые, есть большой риск просто потратить ресурсы и время, а в итоге получить модель хуже готовых решений. Если же после этих вопросов сама цель становится ясной и обоснованной, тогда стоит двигаться дальше.
https://habr.com/ru/articles/994080/
#yolo #detection #детекция_объектов #ml #гиперпараметры #эксперимент #sgd #j #обучение_нейронных_сетей #пайплайн