Логический компас для искусственного интеллекта

Международный коллектив ученых из Сколковского института науки и технологий, МФТИ, Института исследований искусственного интеллекта (AIRI) и Университета Париж-Сите разработал новый, элегантный метод для проверки логических способностей больших языковых моделей (LLM). Вместо того чтобы судить о правильности рассуждений нейросети лишь по ее финальному ответу, исследователи научились заглядывать внутрь ее механизма «внимания» и находить там скрытые паттерны, отвечающие за проверку логики. Этот подход, названный QK-score, позволяет с высокой точностью определять, следует ли модель законам логики на каждом шаге своих рассуждений, делая ее работу более прозрачной и надежной. Результаты исследования, открывающие путь к созданию более предсказуемого и безопасного ИИ, были приняты на main track of EMNLP 2025, и опубликованы в виде препринта на портале arXiv.

https://habr.com/ru/articles/969326/

#механизм_внимания #большие_языковые_модели #Aiтексты #сгенерированные_тексты #трансформеры #рассуждения_нейросети

Логический компас для искусственного интеллекта

Международный коллектив ученых из Сколковского института науки и технологий, МФТИ, Института исследований искусственного интеллекта (AIRI) и Университета Париж-Сите разработал новый, элегантный метод...

Хабр