➤ Talaria: 互動優化機器學習模型以提高效能
✤ https://arxiv.org/abs/2404.03085
文章介紹了Talaria,一個能幫助從事機器學習的人員創建高效模型的系統。該系統讓使用者將模型編譯到硬件,互動式地可視化模型統計數據,並模擬優化以測試對推理指標的影響。作者評估了Talaria的效用,並報告了使用情況。
+ 這篇文章很好地介紹瞭如何利用Talaria系統優化機器學習模型的過程,讓人一目瞭然。
+ 精簡明瞭的內容,能夠迅速瞭解Talaria系統對於提升機器學習效率的重要性。
#機器學習 #人機互動
Talaria: Interactively Optimizing Machine Learning Models for Efficient Inference
On-device machine learning (ML) moves computation from the cloud to personal devices, protecting user privacy and enabling intelligent user experiences. However, fitting models on devices with limited resources presents a major technical challenge: practitioners need to optimize models and balance hardware metrics such as model size, latency, and power. To help practitioners create efficient ML models, we designed and developed Talaria: a model visualization and optimization system. Talaria enables practitioners to compile models to hardware, interactively visualize model statistics, and simulate optimizations to test the impact on inference metrics. Since its internal deployment two years ago, we have evaluated Talaria using three methodologies: (1) a log analysis highlighting its growth of 800+ practitioners submitting 3,600+ models; (2) a usability survey with 26 users assessing the utility of 20 Talaria features; and (3) a qualitative interview with the 7 most active users about their experience using Talaria.