Фотограмметрия для создания датасета систем распознавания лиц

Качество и объем датасетов играют решающее значение для обучения нейросетей. Разметка данных для датасетов это очень трудоемкая работа, для которой необходим ручной труд тысяч человек. Когда пользоватьель вводит капчу типа "укажите светофоры" на сайтах , он помогает ИТ-компаниям размечать данные для датасетов. 20 лет назад считалось, что роботы не могут играть в шахматы, писать симфонии и рассказы. Сегодня в 2024 оказалось, что роботы могут писать симфонии, но не могут указать на каких картинках изображены светофоры. Поэтому для разметки датасетов используется люди. Для определения наличия на картинке светофора или пожарного гидранта используется низкоквалифицированная рабочая сила. Для определения признаков заболевания на рентгеновском снимке используются высококвалифицированные врачи. В любом случае используются люди. Поэтому данные для обучения нейросетей получаются очень дорогими. Есть даже поговорка: "Данные-это новая нефть". Я бы уточнил, что "Размеченные данные-это новая нефть". Под катом будет описана методика добычи (или, как говорят нефтянники, дОбычи) относительно недорогих, но объемных датасетов для систем распознавания лиц.

https://habr.com/ru/articles/789774/

#3d_graphics #artificial_intelligence #Facerecognition #computer_vision

Фотограмметрия для создания датасета систем распознавания лиц

Качество и объем датасетов играют решающее значение для обучения нейросетей. Разметка данных для датасетов это очень трудоемкая работа, для которой необходим ручной труд тысяч человек. Когда...

Хабр