(This post is being modified)

'From Sparse to Dense Functional Data in High Dimensions: Revisiting Phase Transitions from a Non-Asymptotic Perspective', by Shaojun Guo, Dong Li, Xinghao Qiao, Yizhu Wang.

http://jmlr.org/papers/v26/23-1578.html

#sparse #nonparametric #smoothing

From Sparse to Dense Functional Data in High Dimensions: Revisiting Phase Transitions from a Non-Asymptotic Perspective

'Efficient Active Manifold Identification via Accelerated Iteratively Reweighted Nuclear Norm Minimization', by Hao Wang, Ye Wang, Xiangyu Yang.

http://jmlr.org/papers/v25/23-0449.html

#minimization #optimization #smoothing

Efficient Active Manifold Identification via Accelerated Iteratively Reweighted Nuclear Norm Minimization

'Random Smoothing Regularization in Kernel Gradient Descent Learning', by Liang Ding, Tianyang Hu, Jiahang Jiang, Donghao Li, Wenjia Wang, Yuan Yao.

http://jmlr.org/papers/v25/23-0580.html

#regularization #smoothing #gradient

Random Smoothing Regularization in Kernel Gradient Descent Learning

#66510 "softening the extremes of sensations" #aura #smoothing #reiki
#278 #44 #smoothing

'Functions with average smoothness: structure, algorithms, and learning', by Yair Ashlagi, Lee-Ad Gottlieb, Aryeh Kontorovich.

http://jmlr.org/papers/v25/23-0182.html

#smoothing #smoothness #bounding

Functions with average smoothness: structure, algorithms, and learning

'Nonparametric Regression for 3D Point Cloud Learning', by Xinyi Li, Shan Yu, Yueying Wang, Guannan Wang, Li Wang, Ming-Jun Lai.

http://jmlr.org/papers/v25/22-0735.html

#smoothing #3d #clouds

Nonparametric Regression for 3D Point Cloud Learning

'Additive smoothing error in backward variational inference for general state-space models', by Mathis Chagneux, Elisabeth Gassiat, Pierre Gloaguen, Sylvain Le Corff.

http://jmlr.org/papers/v25/22-1392.html

#variational #smoothing #estimation

Additive smoothing error in backward variational inference for general state-space models