Глубокое обучение: Слой линейного преобразования и полносвязная нейросеть. Теория и реализация на самодельном autograd

Всем привет. В этой статье я расскажу про слой линейного преобразования. Идею для реализации я взял из книги «Грокаем глубокое обучение». Здесь рассмотрим как использовать самодельный алгоритм автоматического дифференцирования при создании и обучении нейросети, про который я сделал разбор ранее. Меня зовут Алмаз Хуснутдинов. Я занимаюсь проектом "Теория цифрового интеллекта" - бесплатный и открытый проект, направленный на развитие мышления в направлении создания программы, обладающей интеллектом. Если вам не нужно разбираться в том, как работает нейросеть на низком уровне, то просто прочитайте ту часть статьи, где рассказывается про использование слоев и реализацию нейросети. Содержание: идея слоя прямого распространения, новые операции: операция умножения и деления матрицы на число, линейный слой и дополнительный функционал, задача «логическое или», как происходит обучение линейного слоя и набор данных digits.

https://habr.com/ru/articles/885466/

#полносвязный_слой #обучение_нейросети #полносвязная_нейросеть #autograd #автоматическое_дифференцирование

Глубокое обучение: Слой линейного преобразования и полносвязная нейросеть. Теория и реализация на самодельном autograd

Всем привет. В этой статье я расскажу про слой линейного преобразования. Идею для реализации я взял из книги «Грокаем глубокое обучение». Здесь рассмотрим как использовать самодельный алгоритм...

Хабр